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Abstract

The present document has been written as part of the Diploma Work of the
Master Degree “Probabilités et Modeles Aléatoires” at LPMA®', Université Pierre
et Marie Curie, Paris. It is based on the first two chapters of Rufus Bowen’s lecture
notes “Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms” [3].

I hope to give the reader a few complements and perspectives to better under-
stand the article as well as explain some fundamental concepts in more detail. A
summary is also given.

The goal of the Diploma Work at LPMA is to read and understand an article
in full detail, hand in a written report and give a presentation exposing the topic.

My warm thanks go to Yvan Velenik and Sacha Friedli at the University of
Geneva, who suggested to me this particularly beautiful topic, as well as for being
my formal advisers for this work.
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1 Measure-theoretical preliminaries and complements

1.1 Structural comments on >, and >4

We work on the configuration space ¥, = {1,...,n}%2. {1,...,n} is given the (metriz-
able) discrete topology, and the configuration space, endowed with the product topology,
is thus compact by Tychonoff’s theorem. A configuration is a point z = {z;}3°_ € %,.

A basis of the product topology is (for example) given by elements Uy, (z) = {y : y; =
x; V)i < m}.

Let A be an n x n matrix of 0’s and 1’s such that each row and each column admits
at least a 1 (so that one can leave any coordinate and arrive at any coordinate from
somewhere), define X4 = {z € ¥, : A, ,,., = 1 Vi € Z}. Notice that X4 is closed.
Indeed, z ¢ X4 is equivalent to there being an ¢ € Z such that A, ., 41 = 0. But then
the cylindrical (open) set {y : y; = T, yi+1 = i1} is in (X 4)¢. Thus X 4 is closed and
compact too. Note that ¥, = X4 where A;j =1 for all ¢ and j.

There is an important interpretation of the (natural) entries of powers of the matrix A.
AT for m > 1 will give the number of admissible paths xzoz1 ...z, with 9 =4, 2m = J

.
and A =1Vk=0,...,m — 1. This is immediate by induction on m.

TksTk+1

Given a countable collection of metric spaces { Xy, pn tnen with p, <1 for all n, the

function p: X x X — R on the Cartesian product [ ],y X» given by

poa,y) = 3 Loliniin) 1)

neN

defines a metric that induces the product topology. Note that more generally, for an
arbitrary metric space (Y, d), the function d’' = 1-%(1 induces the same topology on Y. So

for arbitrary (X, pn), we can generate the product topology with the distance function

plasy) = 3 et e)

neN 1 +pn(xn,yn))

In our case, the discrete topology on {1,...,n} can be generated by d(z,y) = 1 — dg4.
It will be useful at times to keep our distance function in mind for the product topology
in order to isolate sets of the type U,,(z) given above for m large enough. Note that the
order given to the numbering of spaces X, is irrelevant.

For a function ¢ : ¥4 — R we define for £ > 0 the variation

vargd = {|¢(z) — d(y)| : @ = yi V|i] <k} € [0,00]. (3)

If ¢ € €(X4), vargo € [0,00). Considering the metric given above and the fact that ¥4
is compact, we immediately deduce that

¢ continuous < ¢ uniformly continuous < limy_,varge = 0.

1.2 Some Ergodic Theory

We discuss the few ergodic notions that are necessary for the article, as well as a couple
of fundamental results. We refer the reader to [10] for a very precise and comprehensive
treatment of the subject.



Consider (M, B, f) a measurable space M endowed with a sigma-algebra B and a
measurable application f : M — M. Such a system (M,B, f) is called a dynamical
system. A probability measure p for such a dynamical system is called f-invariant if
fepr = p. In other words u(f~1(B)) = u(B) for all B € B. A set B € B is said to be
invariant if f~1(B) = B.

Definition (Ergodic measure). An f-invariant probability measure p on a dynamical
system (M, B, f) is called ergodic if every invariant set has measure 0 or 1.

The set of all invariant probability measures on a dynamical system forms a convex
polytope. It can be shown (quite easily) that the set of ergodic measures are exactly the
extremal points of this convex polytope. In other words, an invariant probability measure
u is ergodic if and only if it cannot be written as convex combination p = tuy + (1 —t)us
for p1, po invariant probabilities and ¢ € (0,1). For a proof, see 4.3.2 of [10].
Definition (Mixing). A dynamical system (M, f) with an invariant measure p is called
mizing if

lim (f~"(A) N B) = u(A)u(B) VA, B € B. (4)

n— oo

We immediately notice that mixing implies ergodicity since for an invariant set A,
one gets pu(A) = p(A)?, whence u(A) € {0,1}.

Let’s move on to a central result in Ergodic theory, the proof of which can be found

in chapter 3 of [10].

Theorem (Birkhoff). Let f : M — M be a measurable transformation and p an f-
invariant measure. Given any integrable function ¢ : M — R, the limait

3e) = 1m 13" o @) )

=0

exists p-a.s. Furthermore, the function o thus defined is integrable and satisfies

o(x)dp(@) = | d(x)dp(x). (6)
/ /

If we plug ¢ = xg (for E measurable) in equality (5), we get almost surely a propor-
tion of time spend by the dynamical system (the orbit of the point z) in the set E and
denote it by 7(F, x). Equality (6) then says that the mean time-average of the dynamical
system is equal to its space average.

We’re now in a position to give equivalent formulations of ergodicity. The following
theorem (and its proof) can be found in [10], proposition 4.1.3.

Theorem (Ergodicity conditions). Let p be an invariant probability measure for a dy-
namical system (M, B, f). Equivalent are:

(a) w is ergodic.

(b) For each B € B one has 7(B,x) = u(B), p-a.s.

(c) For each B € B, the function 7(B,.) is constant u-a.s.

(d) For each integrable function ¢ : M — R one has ¢(z) = [ odp p-a.s.



(e) For each integrable function ¢ : M — R the temporal average q~5 M — R is
constant p-a.s.

(f) For each integrable and p-invariant function ¥ : M — R one has ¥(z) = [ Udp,
p-a.s.

(9) Every integrable and p invariant function W : M — R is constant p-a.s.

1.3 The Riesz-Markov-Kakutani Theorem, Prokhorov’s Theo-
rem

In this section we discuss a bridge between probability theory and functional analysis
around the notion of weak convergence. We use mainly [10] and [1] as references and
shall omit proofs.

Consider a metric space (M,d). It is possible to endow the space of probability
measures Mj (M) on M with a topology, called weak topology.

Given a measure p in M;(M) and a finite set & = {¢1,...,¢n} of continuous
bounded functions ¢; : M — R and an € > 0, define

V(p, ®,e) ={ve Mi(M): \/gbidu - /qﬁid,u| < e for all i}. (7)

Any intersection of two such elements contains another element of this form. Thus,
{V(u,®@,€) : M1(M),® = {¢1,...,¢n},€ > 0} can be taken as a basis of neighbourhoods
for any p € My(M). The induced toplogy is called the weak topology. Note that this
topology is Hausdorff. Indeed, if [¢dp = [¢dp for all ¢ bounded continuous then
pu =wv. So there is a ¢ and an € > 0 such that V(u,{¢},e) NV (v, {6}, €) = 0.

The usual notion of weak convergence of probability measures is equivalent to con-
vergence in the weak topology (whence its name):

Lemma (weak convergence). A sequence of probability measures (p)nen converges to
a probability measure p € Mq(M) if and only if [¢du, — [ ¢dp for any bounded
continuous function ¢ : M — R.

In the case of (M, d) being a separable metric space, the weak topology on My (M)
is metrizable by the Lévy-Prokhorov metric D. For p, v in M (M), D is defined by

D(p,v) = inf{é : u(B) < v(B%) + 6 and v(B) < u(B°) + 6 for every borelian B}, (8)
where A° = {z € M : d(z, A) < 6}.

We now move on to a central theorem in probability theory, Prokhorov’s theorem.

Definition (Tightness). Suppose we are given a subset A of My(M) for a separable
metric space (M, d). A is called tight if for all e > 0 one can find a compact set K, C M
such that (M \ K¢) < € for all p in A.

The intuitive idea of tightness is that a given set of measures doesn’t “escape to
infinity”, meaning their mass is concentrated locally.

Theorem (Prokhorov). A collection A C My(M) is tight if and only if the closure of
A is (sequentially) compact in (M1(M), D).



If (M, d) is a compact metric space, such as M = X4, then M;(M) is compact in its
own right and any subset A is relatively compact and thus tight. Thus the full power of
this theorem is only deployed for non-compact spaces M, but we need this information
hereafter.

We now proceed to link measure theory with functional analysis. This is done by
means of the Riesz-Markov-Kakutani theorem. It should be noted that there is a whole
fauna of such theorems, called alternatively Riesz, or Riesz-Markov. They all treat
the duality “measure - linear functional”, whether the functional be positive, continous,
complex valued, and the measure positive, signed or complex, with varying conditions on
the underlying topological space. The greatest care is advised in order not to make too
hasty conclusions. We refer the reader to [5] for a detailed exposition of these problems.

Theorem (Riesz-Markov-Kakutani). Let (X,T) be a locally-compact Hausdorff topo-
logical space and Cy(X) denote the space of continuous functions on X that vanish at
infinity. B = o(T) denotes the Borelian sigma-algebra. Then there is a bijective isom-
etry ® : M,eq(B) = C§(X) between the Banach space of reqular signed measures on X
and the Banach space of continuous functionals on Co(X). @ is given by

B(v)(f) = /X fdv (9)

for f € Co(X) and M,eq(B).

Recall that for a Banach space (E,||-||), the canonical injection ¢ of E into its bi-dual
E** is given by i(v)(f) = f(v) for any f in E* and v in E. It is an isometry. In the case
that ¢ is surjective, the space F is called reflexive. One can consider on E* the coarsest
topology for which all functions i(v), v € E, are continuous. This topology is denoted
by o(E*, E) and is called the weak*-topology. The weak*-topology is always Hausdorff.

Theorem (Banach-Alaoglu-Bourbaki). Let E be a Banach space. The closed unit ball
Bg« ={f € E* :||f|| <1} is compact in the weak™ topology.

Theorem (Metrizability of the unit ball). Let E be a Banach space. Then (Bg~,0(E*, E))
is metrizable if and only if E is separable in the weak™* topology.

Since Bg~ is compact and weak*-topology Hausdorfl, the closed unit ball is closed in
the weak*-topology.

In the case of our metric space (M, d) being compact, we have that £ = (C(M),|-||.)
is separable, and thus the unit ball is metrizable in o(E*, E). Furthermore, M being
compact, we have Co(M) = Cy,(M) = C(M). M1(M) is thus endowed with two metrics,
the one induced by weak*-convergence and the Prokhorov-Lévy metric. But then con-
vergence in either metric is equivalent on M1 (M), so the weak topology and the weak™
topology coincide (and M;(M) is a closed subset of Bg« for the weak*-topology).

The situation is completely different when (M, d) is not compact. In this case the set
of probability measures is not closed in the weak*-topology. We refer the reader to [6]
for a much more detailed treatment of the subject (the correct measure/linear functional
duality has to be specified).

1.4 The Schauder-Tychonoff Fixed Point Theorem

We give a concise panorama of fixed point theorems and steer the discussion to the needs
of our article. First we start with Euclidean space:



Theorem (Brouwer). Let F be a finite dimensional space and let Q C F be a non-empty
compact convex set. Let f: Q — Q be a continuous map. Then f has a fived point.

This result admits the following generalization to Banach spaces:

Theorem (Schauder). Let E be a Banach space, and let C' be a non-empty, closed
conver set in E. Let f : C — C be a continuous map such that F(C) C K, where K is
a compact subset of C. Then F has a fized point in K.

A proof of Brouwer’s fixed point theorem may be found in [8]. This version of
Schauder’s fixed point theorem is given as an exercise with hints in [1]. In our present
situation we need an even more general fixed-point theorem, since we are dealing with a
general topological vector spaces (obtained with the weak*-topology).

Theorem (Schauder-Tychonoff). Let C' be a non-empty compact convex subset of a
locally convex topological vector space. Let f: C — C be a continuous function, then f
has a fixzed point.

A proof of this theorem can be found in chapter V.10 of [9]. A very systematic book
that covers all the intricacies of the subject is Frank Bonsall’s Lectures on some fixed
point theorems of functional analysis [2]. Another proof of Schauder-Tychnoff is found
in its Appendix.

In Bowen’s article, the topological vector space is the topological dual €' (X 4)* en-
dowed with the weak*-topology (and not with the norm topology!). ¥4 being compact
metric, € (X 4) is separable. Whence the unit ball of (X 4)* is metrizable in the weak-
* topology. The Riesz-Markov-Kakutani gives a bijective isometry between the space
of signed measures on ¥4 and €(X4)*. Y4 being compact, the Prokhorov metric en-
dows M;(3,4) with a metric whose induced topology is the projection of the weak-*
topology on M1(X4). M;(X4) is closed in (€(X4)*,0(€(Xa)*,%(X4))). Hence, the
Schauder-Tychonoff theorem can be applies to M1(X4).



2 Technical aspects of the article revisited

2.1 Gibbs Measures

2.1.1 Another metric on ¥4

For any 8 € (0, 1) it is possible to endow X,, (and thus ¥ 4) with another metric dg that
generates the product topology.

For z,y € ¥, define d(x,y) = 3 where N = N(x,y) is the largest integer such that
x; = y; for all li| < N. If there is no such integer, then & = y and one sets the distance to
zero. In other words N is the smallest integer such that z and y differ either at position
N or —N. From this remark, it is immediate that the triangular inequality holds, since
a third element z will have to differ with either z or y (or both...) at position N or —N.

The distances are thus “quantized” as powers of 3. Now notice that for N € N the
open ball {z : d(y,z) < BV} is nothing but {y : y; = x; for |i| < N}. Since all such
former and later elements form a basis for their respective topologies, by proving both
bases are actually the same, we have proven both topologies are equal.

Lemma. Fiz 3 € (0,1). Then f € F4 if and only if f is Holder-continuous with positive
constant with respect to dg.

Proof. Elementary once one notices that f € 4 means there is a b > 0 and a € (0,1)
such that [f(z) — f(y)| < baN @y 3

2.1.2 Identifying ¢ (34) with (X)) and the transfer operator £

Suppose we are given a function ¢ € %(Ez). Then we can think of ¢ as an element
¢ of €(S4) such that ¢(z) = gfg(y) when z; = y; for all i > 0. To see ¢ is indeed
continuous, just notice that ¢ = ¢ o w where 7 is the (continuous) projection of ¥4 onto
. Reciprocally, suppose we are given a function ¢ € € (X4) such that ¢(z) = é(y)
when x; = y; for all i > 0. Then we can think of ¢ as an element ¢ of €(X¥). To see
this, write ¢ = ¢ o where i is an inclusion from ZJAF into ¥ 4 that should be continuous.
For example, fixing n extensions ...x_3x_ox_1 to the left of xg for each value xg of =
we have that ¢ is indeed continuous.

A few comments about the transfer operator £ are now presented. Recall that

(Lof)@) = Y Wy (10)

yEa‘lg

Suppose first that for f € CK(EZ) we have Lg4f continuous, then for each x our sum is
taken on at most n elements. Whence HLMHOO < ndl?l<| f||... So L, is a bounded
operator on ¢'(X). To show continuity, we should notice first that the sum at a value
x depends on the value of zg: all possible values yo for y correspond to the lines of A
whose value at column zq is 1. We can thus see L4 as a patch of n functions L4|v,,
where U; = {z : 29 = i}. These n sets are disjoint, compact (both closed and open), so
have a positive distance to each other, and it is sufficient to show continuity on each of
them, which is trivial, as a sum of continuous functions.



2.1.3 Note on Lemma 1.12

We give an explicit construction to a technicality in the proof of Lemma 1.12.

It is stated that given g € ¢ (X7) and € > 0 one can find an 7 and two functions f;
and fo in %, such that 0 < fo — f1 <e.

For this, given such a g, choose an r such that var,g < ¢, and define

fo(z) = max{g(y) : yi = x; fori € {0,...,r}}. (11)

This maximum exists by compactness. Define f; similarly with a minimum. To check
continuity, proceed exactly as in section 2.1.4.

2.1.4 Constructing a o-invariant measure on % (X 4)

We review in more detail the fundamental step of going from a o-invariant measure on
% (X)) to a o-invariant measure on €' (X4). The Schauder-Tychnoff theorem provides
us with such a measure p, on €(X%) for any ¢ € F4 NE(XF).

Lemma. For f € € (X4) define f* on % by
[ {x}2o) = min{f(y) 1 y € ¥a and y; = x; Vi > 0}, (12)
then f* is continuous.

Proof. We recall that ¥4 being compact (and keeping in mind a product metric), the
assertions f continuous, f uniformly continuous and limg_, o, varg f = 0 are equivalent.

Fix a k such that vary f < € and choose an z € ¢(X7) and an extension Z € €(X4)
(x; = &; for ¢ > 0) such that f*(z) = f(Z) (possible by compactness).

Then for any y € ¥ with y; = x; for i € {0,...,m}, we get, by choosing for y
the same extension as for x that f*(y) < f*(z) +e. Symmetrically f*(z) < f*(y) +e.
Whence |f*(z) — f*(y)| < € as soon as x; = y; for i = 0,...,m, so f* is uniformly
continuous on 7. O

Noticing (by staring patiently at the formula ...) that for n,m >0

[(foo™) 00™ = (foo™™)|| < var,f, (13)

we get, by o-invariance, that

u((f 0 0™)") = p((f 0 0™ ™)) = |u((f 0 0™)") 0 0™ — u((f 0 0" T™)")| < varnf. (14)

This expression goes to 0 as n — oo, f being continuous. We thus have a Cauchy
sequence (p((f o o™)*)n>0, whose limit we shall denote by ji(f). We immediately check
that i is positive and that i(xs,) = lim, oo u((Xs, © 6™)*) = 1. So the Riesz repre-
sentation theorem tells us that [ defines a probability. o-invariance is immediate since
fi(f o) = ji(f) for any continuous f. Furthermore, seeing an f € €' (X7) as an element
of €(X4), we get that i(f) = u(f). In other words ji extends p.



2.1.5 Complement to Theorem 1.16

We deal with a small technicality that is left unsolved in the proof of the theorem. We
are given two Gibbs measures p and p/, and have proven that for a certain constant c,
wWEny(z) < e (B (z) for all m and z. By o-invariance, the inequality holds for any
cylindrical set. We wish to show the inequality is then true for any borelian set E.

The classical “jack in the box” of probability, the pi-system/Dynkin-system theo-
rem , fails because one can’t go to the complementary without changing the inequality.
However, this theorem has an equivalent version:

Theorem (monotone class theorem). Let A be an algebra of sets, and let M(A) be the
smallest monotone class containing A. Then M(A) = o(A).

The algebra of sets A is then simply the set of all finite unions of cylindrical sets.
We define € = {U € B(Z4) : p(U) < ¢/(U)}. A C €, because each element of A
can be written as a disjoint union of cylindrical sets, and one readily checks that % is a
monotone class. Whence o(A) C €.

2.1.6 Complement to Theorem 1.22

We explicit the calculation showing that v/ = pu.
Recall that v/ = %u. On the one hand, by o-invariance, one has that

/
V'(A) = le—ydu
A l’l’ dy, (15)
= [ty
On the other, by v-invariance:
V()= [ a)a
(16)

/
= /(XA ° 0)%du~

Setting A" = o(A), we get for all A’ € B(X,4) that fA,(”fTZ oo)du = [, %du, s0

dv’ _av : : : dv’ :
that o0 = "G 1 almost surely. But since o is ergodic, G s almost surely equal to

a constant ¢. Whence ¢ = 1 and we are done.

2.1.7 Lemma 1.29 Revisited

We recall the following. . .

Definition (Baire Space). A Baire Space is a topological space such that every intersec-
tion of a countable collection of open dense sets in the space is also dense.

...as well as the classical

Theorem (Baire Category theorem). If X is a complete metric space or a locally compact
Hausdorff space, then it is a Baire space.

10



For the first claim, see Munkres [7], chapter 48. For the second, see Dugundji [4],
chapter 11, section 10. Note that Munkres proves the second claim in the special case of
a compact Hausdorff space.

Definition (Topological transitivity). A continuous function f : M — M on a topo-
logical space M is said to be topologically transitive if there exists an x € M such that
{f™(z) :n € N*} is dense in M.

It should be noted that different definitions of topological transitivity exist, for in-
stance replacing N* by N, which would be more coherent will the usual notion of orbit.
Our definition, as in [10], even if stronger, insures we have some notion of periodicity
(since for any open set U in the vicinity of = we will then have a k > 1 with f*(x) € U).
It is not clear which notion is used in Bowen’s lecture notes, however this one is sufficient
for our purpose.

We now proceed to proving an equivalent formulation of topological transitivity for
second-countable spaces (found in [10]).

Lemma. Suppose that M is a is second-countable Baire space. A continuous function
f i1 M — M is topologically transitive if and only if for each pair of open sets U and V
there exists a k > 1 such that f~%(U) intersects V.

Proof. Suppose first that f is transitive and let € M be a point whose orbit {f" () :ne N*}
is dense in M. We first notice that { f"(z) : n > m} is then dense in M for any m € N.
So there is an m > 1 and an n > m such that f™(z) € V and f™(z) € U. Denoting
k=n—m, we get that f™(z) € f~8(U)NV.
To prove the converse, let {U; : j € N*} be a countable basis of open sets of M. Our
hypothesis guarantees that U,;“;lf*k(Uj) is dense in M for any 5 € N*. Then
(o) o0

x=Us*wy (17)

j=1k=1

is a dense (in particular non-empty) subset of M (because M is a Baire space). On the
other hand, if # € X then for any j € N* there is a k > 1 such that f*(z) € U;. Since
the U; form a basis of the topology of M, we proved that {f*(z) : k € N*} is dense in
M.

O

From this characterisation we deduce the following corollary:

Corollary (Lemma 1.29). Let f : M — M be a continuous topologically transitive
continuous map of a compact metric space M, then there is a point x € M such that for
any U # & and N > 0 there exists an n > N with T"(z) € U.

Proof. X being compact metric, it is a second-countable Baire space. Denote by (U;,i > 1)
a basis for the topology. Fix an N > 0. By the previous lemma,

Vin=|J 77"U; (18)
n>N
is a dense open set in M. Whence, by the Baire Category Theorem,
v= (| T (19)
(n,i)EN* xN*

is a dense set. Any x € V does the job. O

11



The very next step in the continuation of the article is to notice that since o is
bijective, topological mixing implies topological transitivity. This is immediate one more
time by the characterisation above.

2.2 General Thermodynamic Formalism
2.2.1 A few notes on expansivity
Let (X, d) be a compact metric space, recall the following

Definition (expansivity). A homeomorphism T : X — X is called expansive if there
exists € > 0 such that d(T*(x), T"(y)) < eV k € Z implies x = y.

In other words, taking the contraposition, if « # y, there is a k = k(x,y) such that
T*(x) and T*(y) end up being at a distance superior to e.

We prove Proposition 2.5 in more detail and explain an interesting consequence, that
connects the first two chapters of Bowen’s lecture notes.

Lemma (Proposition 2.5). Suppose T : X — X is a homeomorphism with expansive
constant €. Then h,(T) = h, (T, D) whenever p € My (X) and diam(D) < e.

Proof. Set D, =T"DV ... DV...T~"D. Suppose that diam(D,,) does not go to zero.
Considering that D, 1 is finer than D,, there would then exist two distinct points
x # y such that both z and y are in the same element of D, for each n, but then
d(T™(z), T"(y)) < e for all n € Z, a contradiction. Thus diam(D,,) goes to 0. By

proposition 2.4, h,(T) = limyh, (T, Dy). By Lemma 2.2(c), h,(T,D;) = hy(T,D). O

We’re now in a position of showing that s,,, defined as h,(o,U) for U = {Uy,...,U,}
with U; = {z € ¥4 xp = i} depends exclusively of o and not on both o and Y. Indeed,
notice that the U; form a partition of (open and compact) sets of 3 4. Thus for ¢ # j we
have that d(U;,U;) > 0. Taking c strictly smaller than the minimum of all such values,
we find that o is expansive with expansivity constant ¢ (each component being shifted
to zero). Considering a usual metric on ¥4 we can take n large enough such that each
element of D,, = c™U V ...UV ...c ™U has diameter less or equal to ¢ (this is coherent
with the definition of h,(c,U) because by invariance one can shift this whole expression
by o~™; we already used this trick implicitly in the lemma above). By the lemma, we
get s, = h,(0). Hence, s, depends on o only, as a o-invariant measure.

The reader interested in further properties of expansivity in relation to entropy and
equilibrium states can (should!) refer to chapters 9 and 10 of [10].

2.2.2 Connecting the two notions of pressure P(¢)

We outline how to reconcile both notions of pressure. For this, using the notation of
general thermodynamic formalism (chapter 2), we must prove that P(¢,U) = P(¢) on
Y4, where U := {Uy,...,Up} with U; = {z : 20 = i} and P(¢) = limgiam)—o P(9, V).

We introduce the following notation for j € Z
W ={U},...,U} with U} = {z: z; =i} (20)

In other terms U7 is a partition and open covering of (infinite) words by value at
position j. We further introduce for j € Z and k > 1

12



Ur = voldh...vo= Ul (21)

In other terms U7'* is a partition and open covering of words whose k letters starting
at position j are fixed.

The philosophy is the following: by a simple bijection, one can prove that for a fixed
k>1

Z(¢, U ) = Z (¢, U7>") (22)

for any j; and jo. This translates into

P(¢, U %) = P(p,u’>%) (23)

for any j; and js.
Then, by an argument using uniform continuity and easy combinatorics on the par-
tition function, one shows that

P(p,u"") = P(¢,U”") (24)

for any k > 1. With our terminology, we have U=U"' and we have shown how to
successively reduce the diameter of the partition to zero (by increasing the length of the
word and shifting it left) without changing the value of the pressure. Whence our stated
equality holds.

2.2.3 Limiting measures as invariant measures

We explain in more details the discussion given before Lemma 2.15 in Bouwer’s lecture
notes and rephrase it in a more general set-up. We refer the reader to section 1.3 and to
chapter 2 of [10].

Lemma (continuity of push-forward). Let (M,d) be a metric space and f : M — M
a continuous function. Then the pushforward application f. : M1(M) — M1(M) is
continuous with respect to the weak*-topology.

Proof. Let ® = {¢1,...,¢n} be any family of continuous bounded functions on M. Since
f is continuous, ¥ = {¢10 f,..., ¢, 0 f} also is a family of continuous bounded functions
on M. But for p, v in My (M) we also have that

| [ it = [oudisl =1 [@0ie nattan - [wie naeal. 9)

which shows that f.(V(u, U, e) C V(fapt, ¢, €) for all u, ® and € > 0. This shows that f,
is continuous for the weak*-topology. O

For v in My(M) we are lead to study the limiting points of series

n—1
) (26)
n =

For (M,d) compact, such limiting points always exist, M;(M) being compact metric.
We have the general

13



Theorem. Any limiting point 1 of a sequence p, as in (26) is a fized point of f.. In
other words, | is an invariant measure.

Proof. Suppose pi,,, — pask — co. Then for any e > 0 and any family ® = {¢1,...,¢n}
of continuous bounded functions we have

nkfl

1 e )
= g / (650 f)dv / budu| < /2 (27)

for each i and each k large enough. By our lemma (continuity of the push-forward):

nkfl

for= fo(lim — 3 fi)
k—o0 N “

(28)
LN
= Jlim "> fiv
Jj=1
Now observe that
1 4 1 & . 1
o L J - ; J = — . — . Nk
2 /(¢%°f)d” nkZ/(@of )dv| nkl/dadu /(qbzof )|
=0 =1 (29)
1
< — sup ¢4
Nk

with this expression being smaller than ¢/2 for all 4 and any k sufficiently large. We

thus get
1 & ,
Y [@opav— [ oudul < (30)
j=1
for each ¢ and any k sufficiently large. This reads

1

ng
—fou%uask%oo. (31)
n,

j=1

We showed above that this sequence converges to f.u. By unicity of the limit, f.u = u
follows. 0
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3 FErrata for the Article

The convention “line minus z” is used to indicate one should go to line x counting from
the bottom of the page.

Page 6, line 1. One should read: ¢ =0,...,m — 1 instead of : = 0,...,m.
Page 7, in the statement of Lemma 1.5. One should specificy 1, ¢ € F4.
Page 10, line 8. The right parenthesis should be moved to before f(y).
Page 11, lines 5, 6 and 7. The constants u; and us should be interchanged.
Page 14, line 1. Read f € €(X7) instead of f € €(Xa)*.

Page 15, in the statement of Theorem 1.16. One should read: p is the unique
Gibbs measure for ¢ € F4 NE (Ej).

Page 16, lines 18, 19 and 20. We'’re actually dealing with pull-backs. In Bowen’s
article, the usual convention T,u and T for the push-forward and pull-back of
a measure p by a function T have been swapped, except here. Indeed (using the
standard convention), for any A borelian we have

[xade ) = [xaoo an
=/(XA°J‘1)fdu (32)
~ [xa(f ool ).

Page 19, line -3. One should read z instead of y in the second term on the right-
hand side of the inequality.

Page 21, line 3. Replace loga; by log p;.

Page 20, line 4. The inequality can be replaced by an equality.

Page 21, line -6. The inequality can be replaced by an equality.

Page 22, lines 3, 4. Replace c; by ¢;.

Page 25, line 25. One should read ... topological mixing is stronger than topolog-

ical transitivity ...”.

Page 25, line -7. Replace u (w) by u (2)

Page 31, line 4. Read m:n'" instead of 7.

Page 32, 4*" line of the proof of Lemma 2.6. Cross out ... = nu(T)".

Page 35, line -2 of the proof of Lemma 2.11. The inequality should be crossed out
and replaced by: ...whence, this holding for any I',,, € W,,, (), we get

mT.D) + [ 6 dp < logh + 109, (6.1 (33)
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Page 37, line 6. The equality should be replaced by an inequality because I', I'2,
I'3, ...are note necessarily disjoint.

Page 37, lines 13 and 14. The notation I'V for “I'V the set of U* so obtained”
overlaps with the previous distinct notion of I'* = {U U, ...U,, : U, € T'}. Note
I'x instead for instance.

Page 41, line -6. The inequality can be replaced by an equality.

Page 43, line 3. Replace 2 by 3 (using the triangular inequality).
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4 Summary of chapter 1: Gibbs Measures

4.1 Construction of Gibbs Measures and a few further properties
The goal of this first chapter is to prove the following

Theorem (Existence of Gibbs measures, preliminary formulation). Suppose ¢ : X,, — R
and there are ¢ > 0 and o € (0,1) so that varye < ca® for all k. Then there is a unique
€ M(3,) for which one can find constants ¢y > 0, co > 0, and P such that

=2, Vi=0,...,m—1
e < My — ) < (34)
exp(—Pm + 3705 ¢(oFz))

for every x € ¥, and m > 0.

Such functions are denoted by ¢ € %4 and the measure p or ug associated to ¢
is called a Gibbs measure. The discussion is generalized by considering ¥ 4 instead for
a topologically mixing system (o : ¥4 — 34 is topologically mixing if for U, V' open
subsets of 3 4 there is an N such that e™U NV # ( for m > N). Topological mixing is
proven to be equivalent to there being an M > 0 such that AM > 0. The preliminary
formulation is a particular case of the following theorem, with A a matrix whose entries
are 1’s.

Theorem (Existence of Gibbs measures, general version). Suppose ¥4 is topologically
mizing and ¢ € F4. There is a unique o-invariant Borel probability measure i on 4
for which one can find constants ¢ > 0, co > 0 and P such that

Yy =x;Vi=0,....m—1
o < my:y 0. } <o (35)
exp(—Pm + 7,05 ¢(oFz))

for every x € X4 and m > 0. Furthermore, ¢ is ergodic.

The strategy to tackle the proof, loosely speaking, will be to reduce the problem to
Y with ¢ € Z4 NE(X7F), solve it on X (proceeding to standard identifications, see
section 2), and then extend the obtained measure back to X 4.

This strategy is motivated by the following few considerations/results.

Definition (homology). Two functions ¢, ¢ in €(X4) are homologous with respect to
o if there is a u € €(X4) so that Y(z) = é(z) — u(z) + u(oz).

Lemma. If ¢1, ¢o are homologous and Gibbs’ theorem holds for ¢1, then it holds for ¢
for c1, c2, and P unchanged.

Lemma. If ¢ € .F 4, then ¢ is homologous to some ¢ € F 4 with (z) = ¥ (y) whenever
x; =y; for all i > 0.

We recall the defnition of the transfer operator £ = L4 on € (X)) for ¢ € €(Z7):

(Lof)(z)= > Wi(y). (36)

geaflg

The “atomic bomb to crack a nut” that will solve our problem is the Schauder-
Tychonoff theorem Let E be a non-empty compact conver subset of a locally convex
topological vector space, then any continuous function G : E — E has a fixed point. 1t is
implemented twice to prove the central
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Theorem (Ruelle’s Perron-Frobenius Theorem). Let ¥4 be topologically mizing, ¢ €
FaNE (k) and L = L, as above. There are A > 0, h € €(X}) with h > 0 and
v € M(SY) for which Lh = Ah, L*v = \v, v(1) and

lim [[A""L™g — v(g)h| =0 for all g € € (=F). (37)

m—r o0

Since L is a positive operator with £1 > 0, one gets by the Riesz-Markov-Kakutani
theorem that G(u) = (L*u)~'L*u € M(XF) for p € M(X}). G is trivially seen to
be continuous. One can apply the Schauder-Tychonoff theorem to the set F = M(Ej{)
and find a probability measure v such that G(v) = v. In other words L*v = Av with
A= (L*)(1).

The remainder of the proof of Ruelle’s theorem consists in a series of very technical
lemmas, the most important of which we state here. To this end, we analyse then set

A={fed(X}): f>0,v(f)=1, f(z) < B, f(z') when z; = 2 for alli = 0,...,m}

(38)
where By, = exp(}_p . 2ba*) and b > 0, o € (0,1) are such that varg$ < ba* for all
k > 0. One then shows

Lemma. There is and h € A with Lh = Ah and h > 0.

Part of the proof consists of showing that the operator A~'£ is defined on A, and
that A is compact by means of the Ascoli-Arzela theorem. One then applies Schauder-
Tychonoff once more to A~ L.

We now have the necessary tools in hand to construct an invariant measure on X 4.
For ¢ € F4 N ‘K(EX) and v, h, A given by Ruelle’s Perron-Frobenius Theorem, y = hv
is a probability measure on X% with u(f) = v(hf) = [ f(z)h(z)dv(z). Showing that o
is invariant is pretty straight-forward:

Lemma. pu is invariant under o : Ej — ZX

Proof. This is equivalent to showing that u(f) = u(foo) for any f € €(=7). First note
that

(L -9 = > fga

I
~
—
<
S—
Q
—~

R)
<
=

—

w

N=)

S~—

Il
B
Kﬁ
= !
]
Q
S~—
N~—
IS
:—/

This yields

u(f) =v(hf)
v(NTILh - f)
“W(L(h- (foo))

A (40)
— A L) (- (f o)
— u(h-(fo0)
— u(foo).
O

18



Extending u to a o-invariant measure i on X 4 from EX is an important but simple
technicality that is discussed in more detail in section 2. It should be (crucially) noted
that i(f) = p(f) for f € €(2]) (with the usual identification of seeing a function f on
Y4 such that f(z) = f(y) when z; = y;, 4 > 0 as a function on Y7, and conversely),
which is why we shall say that /i “extends” p. In the sequel, we shall denote x indifferently
for p or fi.

The very next step is showing that p is mixing for o : ¥ 4 — ¥ 4 and thus ergodic.

One is finally left with the culmination of the exposition, which is showing that p (or
) is indeed a Gibbs measure (satisfying the inequality with the constants ¢; and ¢),
and finally that it is the unique such measure. That p is indeed a Gibbs measure uses
the technical machinery developed for Ruelle’s Perron-Frobenius theorem. Unicity uses
an “algebra - monotone class” argument followed by a Radon-Nikodym argument and is
mostly classical.

A few more results are discussed in the final section of chapter 1 of Bowen’s lecture
notes. We shall simply mention that conditions under which pys = uy are provided (for
¥ 4 topologically mixing and ¢, ¢ in .%,4) and present one last theorem.

To this end, we shall introduce the space J#, of functions f € €(X4) such that
var, f < ca for some ¢ and fixed a. %, is then a Banach space under the norm

171l =1f1 + sup(a™~"varf). (a)

Theorem (Exponential Cluster Property). For a fized o € (0,1) there are constants
D >0 andy € (0,1) such that

[u(f - (go ™)) < DIfllallglla " (42)

forall f, g in H,, n>0.

4.2 The Variational Principle

The Gibbs measures py for ¢ € F4 are the only ones satisfying a variational principle.
A series of definitions is needed at first. It should be kept in mind that these definitions
and properties are special cases of the more general theory of thermodynamics presented
in the next section. They are fully sufficient, however, for the purpose of this variational
principle.

For a (measurable) partition C = {C4,...;Cy} of a probability space (X, B, u), the
entropy of C is defined as
k
H,(C) =Y (—p(Cy)log u(Cy)). (43)
i=1
If D is another finite partition of X, CV D :={C;ND;:C; €C,D; € D}. H,(¢) >
0 and the calculus that results from this definition is based on the concave positive
function ¢(x) = —xlog(z) with ¢(0) = 0, = € [0, 1] and sub-additivity: one shows that
H,(€ /D) < H,(€) + H,(D).
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Lemma. If D is a finite partition of (X, B, 1) and T : X — X a p-invariant measurable
function, then the limit

1
h,(T,D) = lim —H,(DVT 'D...vT-™"'D) (44)

m—oo 1M
exists in [0, 00).

Definition (entropy of u). For € My(X4) and the partition U = {U,, ..., U,} where
Ui ={z €X4: xo =1}, the quantity s(u) := h,(o,U) is called the entropy of fi.

We now define pressure directly translating the given definitions leading to it in the
language of general thermodynamic formalism (chapter 2 of Bowen’s notes).

For this partition (as well as open cover) U we can define the set W, (i) of all
m-strings U = U, U;, ... U, _,. One writes m = m(U) and define

XU)={zeX:o"zeU, fork=0,...,m—1}. (45)

This set will be non-empty if and only if A;, ;,,, =1 for k=0,...,m — 1. Define then
m—1

Sm(¢)(U) = sup Z (o*z) :z € X(U) (46)
k=0

and S;,¢(U) = —oo if X(U) = (). Finally define the partition function
Zm(9) = > exp(Smo(U)). (47)
UeWn(U)

Lemma. For ¢ € €(S4), the limit P(¢) := lim,,—o0 = log Z,,(¢) exists and is called
the pressure of ¢.

Theorem. Suppose ¢ € €(X4) and p € My(X4). Then

xm+/amsm@. (48)

Theorem (Variational Principle). Let ¢ € F4, ¥4 topologically mizing and pg the
Gibbs measure of ¢. Then g is the only p € My (3 a) for which

4m+/@m:Pwy (49)

The proof entails showing that actually P(¢) = P, where P is given with the constants
c1 and c¢; for the Gibbs measure 4. The equality is then showed to be verified for jig.
Supposing another measure v satisfied the variational principle, one yields a contradiction
by first supposing v singular to g and that v = p otherwise. The proof is tricky and
very technical.
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5 Summary of chapter 2: General Thermodynamic
Formalism

The objective of the second chapter is to rephrase the machinery developed in the first
chapter in a more general set-up called general thermodynamic formalism. Entropy and
pressure notions are given and a variational principle is derived.

Definition (entropy). Let T be a measure-preserving endomorphism of a probability
space (X, 1) and D denote a finite partition of X. The entropy of p with respect to T is
defined by
hu(T) = sup h, (T, D) (50)
D

where D ranges over all finite partitions of X.
Definition (conditional entropy). H,(¢|D) := H,(¢ vV D) — H,(D).

Intuitively, conditional entropy measures the additional information given by parti-
tion € once we know the information given by partition D. H,(¢|D) > 0. If € =D it
is worth zero.

A “calculus of entropy” is then developed, that culminates in the following lemma,
the proof of which essentially relies on the Lebesgue € for finite open coverings of compact
metric spaces.

Lemma. Suppose T : X — X is a continuous map on a compact metric space, u €
Mrp(X) and that D, is a sequence of partitions with diam(D,) — 0, then

hyu(T) = Tim 1, (T, Dy) (51)

Using the concept of expansivity, the entropy s(u) previously defined for ¥ 4 is shown

to be equal to the more general concept of entropy of this chapter: s(p) = h,(0). See
section 2.

The next step is to generalize the notion of pressure. We work with a continuous
map T : X — X on a compact metric space X and a ¢ € €(X). For any open cover U
of X we define the set of m-strings W,,,(¢), X (U), Sy (¢)(U) in exactly the same way as

in the first chapter. One then says that I' C W,,,(U) covers X if X = UyerX(U). One
finally defines the partition function

Zn(#,U) = inf Y _ exp(Sm(U)) (52)
1%

where T' runs over all subsets of W,,,(U) covering X. It’s important to notice that in
the standard open cover U = {Uy,...,U,} with U; = {z : 2o = i} of first chapter of the
lecture notes, W,,, (U itself forms a partition of X (o being a homeomorphism), whence
the infimum is superfluous. Two lemmas are derived

Lemma. The limit 1

exists and is finite.
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Lemma. The limit
P(¢) = lim giam@—oP(é,U) (54)

exists (but may be infinite) and is called pressure of ¢.

For now, the pressure P(¢) defined in chapter 1 of the lecture notes with ¢ in C(X 4) is
what we defined here as P(¢,U). For a direct explanation showing why both definitions
coincide, we refer to section 2. Expos-facto, we can show this is the case after exposing
the culmination of our theory:

Theorem (Variational Principle). Let T : X — X be a continuous map on a compact
metric space and ¢ € € (X). Then

supueatso () + [ o) = Prec). (53)

Let’s rephrase the variational principle of chapter 1 in our new notation. We showed
in section 2 that s(u) = h(o,U) = hy(o) for the partition U = {Ui,...,U,} where
Ui ={z:xz =i} of £4. Then for any o-invariant measure p on ¥4 with ¢ € 4 one
has

h(0) + / odu < Pr(o,U) (56)

with equality if and only if p = 1.

By comparing both variational principles, and taking the notations of the second
chapter one concludes that Pr(¢,U) = Pr(¢), and so we showed a posteriori that the
definition of pressure from the first chapter is compatible with the one from the second
chapter.
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