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Abstract

The present document has been written as part of the Diploma Work of the
Master Degree “Probabilités et Modèles Aléatoires” at LPMA1, Université Pierre
et Marie Curie, Paris. It is based on the first two chapters of Rufus Bowen’s lecture
notes “Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms” [3].

I hope to give the reader a few complements and perspectives to better under-
stand the article as well as explain some fundamental concepts in more detail. A
summary is also given.

The goal of the Diploma Work at LPMA is to read and understand an article
in full detail, hand in a written report and give a presentation exposing the topic.

My warm thanks go to Yvan Velenik and Sacha Friedli at the University of
Geneva, who suggested to me this particularly beautiful topic, as well as for being
my formal advisers for this work.

1Laboratoire de Probabilités et Modèles Aléatoires
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1 Measure-theoretical preliminaries and complements

1.1 Structural comments on Σn and ΣA

We work on the configuration space Σn = {1, . . . , n}Z. {1, . . . , n} is given the (metriz-
able) discrete topology, and the configuration space, endowed with the product topology,
is thus compact by Tychonoff’s theorem. A configuration is a point x = {xi}∞i=−∞ ∈ Σn.
A basis of the product topology is (for example) given by elements Um(x) = {y : yi =
xi ∀ |i| ≤ m}.

Let A be an n× n matrix of 0’s and 1’s such that each row and each column admits
at least a 1 (so that one can leave any coordinate and arrive at any coordinate from
somewhere), define ΣA = {x ∈ Σn : Axi,xi+1

= 1 ∀i ∈ Z}. Notice that ΣA is closed.
Indeed, x /∈ ΣA is equivalent to there being an i ∈ Z such that Axi,xi+1

= 0. But then
the cylindrical (open) set {y : yi = xi, yi+1 = xi+1} is in (ΣA)c. Thus ΣA is closed and
compact too. Note that Σn = ΣA where Ai,j = 1 for all i and j.

There is an important interpretation of the (natural) entries of powers of the matrix A.
Ami,j for m ≥ 1 will give the number of admissible paths x0x1 . . . xm with x0 = i, xm = j
and Axk,xk+1

= 1 ∀k = 0, . . . ,m− 1. This is immediate by induction on m.

Given a countable collection of metric spaces {Xn, ρn}n∈N with ρn ≤ 1 for all n, the
function ρ : X ×X → R on the Cartesian product

∏
n∈NXn given by

ρ(x, y) =
∑
n∈N

ρn(xn, yn)

2n
(1)

defines a metric that induces the product topology. Note that more generally, for an
arbitrary metric space (Y, d), the function d′ = d

1+d induces the same topology on Y . So
for arbitrary (Xn, ρn), we can generate the product topology with the distance function

ρ(x, y) =
∑
n∈N

ρn(xn, yn)

2n(1 + ρn(xn, yn))
. (2)

In our case, the discrete topology on {1, . . . , n} can be generated by d(x, y) = 1 − δx,y.
It will be useful at times to keep our distance function in mind for the product topology
in order to isolate sets of the type Um(x) given above for m large enough. Note that the
order given to the numbering of spaces Xn is irrelevant.

For a function φ : ΣA → R we define for k ≥ 0 the variation

varkφ = {|φ(x)− φ(y)| : xi = yi ∀|i| ≤ k} ∈ [0,∞]. (3)

If φ ∈ C (ΣA), varkφ ∈ [0,∞). Considering the metric given above and the fact that ΣA
is compact, we immediately deduce that

φ continuous⇔ φ uniformly continuous⇔ limk→∞varkφ = 0.

1.2 Some Ergodic Theory

We discuss the few ergodic notions that are necessary for the article, as well as a couple
of fundamental results. We refer the reader to [10] for a very precise and comprehensive
treatment of the subject.
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Consider (M,B, f) a measurable space M endowed with a sigma-algebra B and a
measurable application f : M → M . Such a system (M,B, f) is called a dynamical
system. A probability measure µ for such a dynamical system is called f -invariant if
f∗µ = µ. In other words µ(f−1(B)) = µ(B) for all B ∈ B. A set B ∈ B is said to be
invariant if f−1(B) = B.

Definition (Ergodic measure). An f -invariant probability measure µ on a dynamical
system (M,B, f) is called ergodic if every invariant set has measure 0 or 1.

The set of all invariant probability measures on a dynamical system forms a convex
polytope. It can be shown (quite easily) that the set of ergodic measures are exactly the
extremal points of this convex polytope. In other words, an invariant probability measure
µ is ergodic if and only if it cannot be written as convex combination µ = tµ1 + (1− t)µ2

for µ1, µ2 invariant probabilities and t ∈ (0, 1). For a proof, see 4.3.2 of [10].

Definition (Mixing). A dynamical system (M,f) with an invariant measure µ is called
mixing if

lim
n→∞

µ(f−n(A) ∩B) = µ(A)µ(B) ∀A,B ∈ B. (4)

We immediately notice that mixing implies ergodicity since for an invariant set A,
one gets µ(A) = µ(A)2, whence µ(A) ∈ {0, 1}.

Let’s move on to a central result in Ergodic theory, the proof of which can be found
in chapter 3 of [10].

Theorem (Birkhoff). Let f : M → M be a measurable transformation and µ an f -
invariant measure. Given any integrable function φ : M → R, the limit

φ̃(x) = lim
n→∞

1

n

n−1∑
j=0

φ(f j(x)) (5)

exists µ-a.s. Furthermore, the function φ̃ thus defined is integrable and satisfies∫
φ̃(x)dµ(x) =

∫
φ(x)dµ(x). (6)

If we plug φ = χE (for E measurable) in equality (5), we get almost surely a propor-
tion of time spend by the dynamical system (the orbit of the point x) in the set E and
denote it by τ(E, x). Equality (6) then says that the mean time-average of the dynamical
system is equal to its space average.

We’re now in a position to give equivalent formulations of ergodicity. The following
theorem (and its proof) can be found in [10], proposition 4.1.3.

Theorem (Ergodicity conditions). Let µ be an invariant probability measure for a dy-
namical system (M,B, f). Equivalent are:

(a) µ is ergodic.

(b) For each B ∈ B one has τ(B, x) = µ(B), µ-a.s.

(c) For each B ∈ B, the function τ(B, .) is constant µ-a.s.

(d) For each integrable function φ : M → R one has φ̃(x) =
∫
φdµ µ-a.s.
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(e) For each integrable function φ : M → R the temporal average φ̃ : M → R is
constant µ-a.s.

(f) For each integrable and µ-invariant function Ψ : M → R one has Ψ(x) =
∫

Ψdµ,
µ-a.s.

(g) Every integrable and µ invariant function Ψ : M → R is constant µ-a.s.

1.3 The Riesz-Markov-Kakutani Theorem, Prokhorov’s Theo-
rem

In this section we discuss a bridge between probability theory and functional analysis
around the notion of weak convergence. We use mainly [10] and [1] as references and
shall omit proofs.

Consider a metric space (M,d). It is possible to endow the space of probability
measures M1(M) on M with a topology, called weak topology.

Given a measure µ in M1(M) and a finite set Φ = {φ1, . . . , φN} of continuous
bounded functions φi : M → R and an ε > 0, define

V (µ,Φ, ε) = {ν ∈M1(M) : |
∫
φidν −

∫
φidµ| < ε for all i}. (7)

Any intersection of two such elements contains another element of this form. Thus,
{V (µ,Φ, ε) :M1(M),Φ = {φ1, . . . , φN}, ε > 0} can be taken as a basis of neighbourhoods
for any µ ∈ M1(M). The induced toplogy is called the weak topology. Note that this
topology is Hausdorff. Indeed, if

∫
φdµ =

∫
φdµ for all φ bounded continuous then

µ = ν. So there is a φ and an ε > 0 such that V (µ, {φ}, ε) ∩ V (ν, {φ}, ε) = ∅.
The usual notion of weak convergence of probability measures is equivalent to con-

vergence in the weak topology (whence its name):

Lemma (weak convergence). A sequence of probability measures (µ)n∈N converges to
a probability measure µ ∈ M1(M) if and only if

∫
φdµn →

∫
φdµ for any bounded

continuous function φ : M → R.

In the case of (M,d) being a separable metric space, the weak topology on M1(M)
is metrizable by the Lévy-Prokhorov metric D. For µ, ν in M1(M), D is defined by

D(µ, ν) = inf{δ : µ(B) ≤ ν(Bδ) + δ and ν(B) ≤ µ(Bδ) + δ for every borelian B}, (8)

where Aδ = {x ∈M : d(x,A) < δ}.

We now move on to a central theorem in probability theory, Prokhorov’s theorem.

Definition (Tightness). Suppose we are given a subset A of M1(M) for a separable
metric space (M,d). A is called tight if for all ε > 0 one can find a compact set Kε ⊂M
such that µ(M \Kε) < ε for all µ in A.

The intuitive idea of tightness is that a given set of measures doesn’t “escape to
infinity”, meaning their mass is concentrated locally.

Theorem (Prokhorov). A collection A ⊂ M1(M) is tight if and only if the closure of
A is (sequentially) compact in (M1(M), D).
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If (M,d) is a compact metric space, such as M = ΣA, thenM1(M) is compact in its
own right and any subset A is relatively compact and thus tight. Thus the full power of
this theorem is only deployed for non-compact spaces M , but we need this information
hereafter.

We now proceed to link measure theory with functional analysis. This is done by
means of the Riesz-Markov-Kakutani theorem. It should be noted that there is a whole
fauna of such theorems, called alternatively Riesz, or Riesz-Markov. They all treat
the duality “measure - linear functional”, whether the functional be positive, continous,
complex valued, and the measure positive, signed or complex, with varying conditions on
the underlying topological space. The greatest care is advised in order not to make too
hasty conclusions. We refer the reader to [5] for a detailed exposition of these problems.

Theorem (Riesz-Markov-Kakutani). Let (X, T ) be a locally-compact Hausdorff topo-
logical space and C0(X) denote the space of continuous functions on X that vanish at
infinity. B = σ(T ) denotes the Borelian sigma-algebra. Then there is a bijective isom-
etry Φ :Mreg(B) → C∗0 (X) between the Banach space of regular signed measures on X
and the Banach space of continuous functionals on C0(X). Φ is given by

Φ(ν)(f) :=

∫
X

fdν (9)

for f ∈ C0(X) and Mreg(B).

Recall that for a Banach space (E,‖·‖), the canonical injection i of E into its bi-dual
E∗∗ is given by i(v)(f) = f(v) for any f in E∗ and v in E. It is an isometry. In the case
that i is surjective, the space E is called reflexive. One can consider on E∗ the coarsest
topology for which all functions i(v), v ∈ E, are continuous. This topology is denoted
by σ(E∗, E) and is called the weak*-topology. The weak*-topology is always Hausdorff.

Theorem (Banach-Alaoglu-Bourbaki). Let E be a Banach space. The closed unit ball
BE∗ = {f ∈ E∗ :‖f‖ ≤ 1} is compact in the weak* topology.

Theorem (Metrizability of the unit ball). Let E be a Banach space. Then (BE∗ , σ(E∗, E))
is metrizable if and only if E is separable in the weak* topology.

Since BE∗ is compact and weak*-topology Hausdorff, the closed unit ball is closed in
the weak*-topology.

In the case of our metric space (M,d) being compact, we have that E = (C(M),‖·‖∞)
is separable, and thus the unit ball is metrizable in σ(E∗, E). Furthermore, M being
compact, we have C0(M) = Cb(M) = C(M). M1(M) is thus endowed with two metrics,
the one induced by weak*-convergence and the Prokhorov-Lévy metric. But then con-
vergence in either metric is equivalent on M1(M), so the weak topology and the weak*
topology coincide (and M1(M) is a closed subset of BE∗ for the weak*-topology).

The situation is completely different when (M,d) is not compact. In this case the set
of probability measures is not closed in the weak*-topology. We refer the reader to [6]
for a much more detailed treatment of the subject (the correct measure/linear functional
duality has to be specified).

1.4 The Schauder-Tychonoff Fixed Point Theorem

We give a concise panorama of fixed point theorems and steer the discussion to the needs
of our article. First we start with Euclidean space:
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Theorem (Brouwer). Let F be a finite dimensional space and let Q ⊂ F be a non-empty
compact convex set. Let f : Q→ Q be a continuous map. Then f has a fixed point.

This result admits the following generalization to Banach spaces:

Theorem (Schauder). Let E be a Banach space, and let C be a non-empty, closed
convex set in E. Let f : C → C be a continuous map such that F (C) ⊂ K, where K is
a compact subset of C. Then F has a fixed point in K.

A proof of Brouwer’s fixed point theorem may be found in [8]. This version of
Schauder’s fixed point theorem is given as an exercise with hints in [1]. In our present
situation we need an even more general fixed-point theorem, since we are dealing with a
general topological vector spaces (obtained with the weak*-topology).

Theorem (Schauder-Tychonoff). Let C be a non-empty compact convex subset of a
locally convex topological vector space. Let f : C → C be a continuous function, then f
has a fixed point.

A proof of this theorem can be found in chapter V.10 of [9]. A very systematic book
that covers all the intricacies of the subject is Frank Bonsall’s Lectures on some fixed
point theorems of functional analysis [2]. Another proof of Schauder-Tychnoff is found
in its Appendix.

In Bowen’s article, the topological vector space is the topological dual C (ΣA)∗ en-
dowed with the weak*-topology (and not with the norm topology!). ΣA being compact
metric, C (ΣA) is separable. Whence the unit ball of C (ΣA)∗ is metrizable in the weak-
* topology. The Riesz-Markov-Kakutani gives a bijective isometry between the space
of signed measures on ΣA and C (ΣA)∗. ΣA being compact, the Prokhorov metric en-
dows M1(ΣA) with a metric whose induced topology is the projection of the weak-*
topology on M1(ΣA). M1(ΣA) is closed in (C (ΣA)∗, σ(C (ΣA)∗,C (ΣA))). Hence, the
Schauder-Tychonoff theorem can be applies to M1(ΣA).
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2 Technical aspects of the article revisited

2.1 Gibbs Measures

2.1.1 Another metric on ΣA

For any β ∈ (0, 1) it is possible to endow Σn (and thus ΣA) with another metric dβ that
generates the product topology.

For x, y ∈ Σn define d(x, y) = βN where N = N(x, y) is the largest integer such that
xi = yi for all |i| < N . If there is no such integer, then x = y and one sets the distance to
zero. In other words N is the smallest integer such that x and y differ either at position
N or −N . From this remark, it is immediate that the triangular inequality holds, since
a third element z will have to differ with either x or y (or both...) at position N or −N .

The distances are thus “quantized” as powers of β. Now notice that for N ∈ N the
open ball {x : d(y, x) < βN} is nothing but {y : yi = xi for |i| ≤ N}. Since all such
former and later elements form a basis for their respective topologies, by proving both
bases are actually the same, we have proven both topologies are equal.

Lemma. Fix β ∈ (0, 1). Then f ∈ FA if and only if f is Hölder-continuous with positive
constant with respect to dβ.

Proof. Elementary once one notices that f ∈ FA means there is a b > 0 and α ∈ (0, 1)
such that |f(x)− f(y)| ≤ bαN(x,y).

2.1.2 Identifying C (ΣA) with C (Σ+
A) and the transfer operator L

Suppose we are given a function φ ∈ C (Σ+
A). Then we can think of φ as an element

φ̃ of C (ΣA) such that φ̃(x) = φ̃(y) when xi = yi for all i ≥ 0. To see φ̃ is indeed

continuous, just notice that φ̃ = φ ◦ π where π is the (continuous) projection of ΣA onto
Σ+
A. Reciprocally, suppose we are given a function φ̃ ∈ C (ΣA) such that φ̃(x) = φ̃(y)

when xi = yi for all i ≥ 0. Then we can think of φ̃ as an element φ of C (Σ+
A). To see

this, write φ = φ̃ ◦ i where i is an inclusion from Σ+
A into ΣA that should be continuous.

For example, fixing n extensions . . . x−3x−2x−1 to the left of x0 for each value x0 of x
we have that i is indeed continuous.

A few comments about the transfer operator L are now presented. Recall that

(Lφf)(x) =
∑

y∈σ−1x

eφ(y)f(y) (10)

Suppose first that for f ∈ C (Σ+
A) we have Lφf continuous, then for each x our sum is

taken on at most n elements. Whence
∥∥Lφf∥∥∞ ≤ ne‖φ‖∞‖f‖∞. So Lφ is a bounded

operator on C (Σ+
A). To show continuity, we should notice first that the sum at a value

x depends on the value of x0: all possible values y0 for y correspond to the lines of A
whose value at column x0 is 1. We can thus see Lφ as a patch of n functions Lφ|Ui

,
where Ui = {x : x0 = i}. These n sets are disjoint, compact (both closed and open), so
have a positive distance to each other, and it is sufficient to show continuity on each of
them, which is trivial, as a sum of continuous functions.
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2.1.3 Note on Lemma 1.12

We give an explicit construction to a technicality in the proof of Lemma 1.12.
It is stated that given g ∈ C (Σ+

A) and ε ≥ 0 one can find an r and two functions f1

and f2 in Cr such that 0 ≤ f2 − f1 ≤ ε.
For this, given such a g, choose an r such that varrg ≤ ε, and define

f2(x) = max{g(y) : yi = xi for i ∈ {0, . . . , r}}. (11)

This maximum exists by compactness. Define f1 similarly with a minimum. To check
continuity, proceed exactly as in section 2.1.4.

2.1.4 Constructing a σ-invariant measure on C (ΣA)

We review in more detail the fundamental step of going from a σ-invariant measure on
C (Σ+

A) to a σ-invariant measure on C (ΣA). The Schauder-Tychnoff theorem provides
us with such a measure µφ on C (Σ+

A) for any φ ∈ FA ∩ C (Σ+
A).

Lemma. For f ∈ C (ΣA) define f∗ on Σ+
A by

f∗({x}∞i=0) = min{f(y) : y ∈ ΣA and yi = xi ∀i ≥ 0}, (12)

then f∗ is continuous.

Proof. We recall that ΣA being compact (and keeping in mind a product metric), the
assertions f continuous, f uniformly continuous and limk→∞ varkf = 0 are equivalent.

Fix a k such that varkf ≤ ε and choose an x ∈ C (Σ+
A) and an extension x̃ ∈ C (ΣA)

(xi = x̃i for i ≥ 0) such that f∗(x) = f(x̃) (possible by compactness).
Then for any y ∈ Σ+

A with yi = xi for i ∈ {0, . . . ,m}, we get, by choosing for y
the same extension as for x that f∗(y) ≤ f∗(x) + ε. Symmetrically f∗(x) ≤ f∗(y) + ε.
Whence |f∗(x) − f∗(y)| ≤ ε as soon as xi = yi for i = 0, . . . ,m, so f∗ is uniformly

continuous on Σ+
A.

Noticing (by staring patiently at the formula . . . ) that for n,m ≥ 0

‖(f ◦ σn)∗ ◦ σm − (f ◦ σn+m)∗‖ ≤ varnf, (13)

we get, by σ-invariance, that

|µ((f ◦ σn)∗)− µ((f ◦ σn+m)∗)| = |µ((f ◦ σn)∗) ◦ σm − µ((f ◦ σn+m)∗)| ≤ varnf. (14)

This expression goes to 0 as n → ∞, f being continuous. We thus have a Cauchy
sequence (µ((f ◦ σn)∗)n≥0, whose limit we shall denote by µ̃(f). We immediately check
that µ̃ is positive and that µ̃(χΣA

) = limn→∞ µ((χΣA
◦ σn)∗) = 1. So the Riesz repre-

sentation theorem tells us that µ̃ defines a probability. σ-invariance is immediate since
µ̃(f ◦ σ) = µ̃(f) for any continuous f . Furthermore, seeing an f ∈ C (Σ+

A) as an element
of C (ΣA), we get that µ̃(f) = µ(f). In other words µ̃ extends µ.
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2.1.5 Complement to Theorem 1.16

We deal with a small technicality that is left unsolved in the proof of the theorem. We
are given two Gibbs measures µ and µ′, and have proven that for a certain constant c,
µ(Em(x) ≤ cµ′(Em(x) for all m and x. By σ-invariance, the inequality holds for any
cylindrical set. We wish to show the inequality is then true for any borelian set E.

The classical “jack in the box” of probability, the pi-system/Dynkin-system theo-
rem , fails because one can’t go to the complementary without changing the inequality.
However, this theorem has an equivalent version:

Theorem (monotone class theorem). Let A be an algebra of sets, and let M(A) be the
smallest monotone class containing A. Then M(A) = σ(A).

The algebra of sets A is then simply the set of all finite unions of cylindrical sets.
We define C = {U ∈ B(ΣA) : µ(U) ≤ cµ′(U)}. A ⊂ C , because each element of A
can be written as a disjoint union of cylindrical sets, and one readily checks that C is a
monotone class. Whence σ(A) ⊂ C .

2.1.6 Complement to Theorem 1.22

We explicit the calculation showing that ν′ = µ.
Recall that ν′ = dν′

dµ µ. On the one hand, by σ-invariance, one has that

ν′(A) =

∫
A

dν′

dµ
dµ

=

∫
(χA ◦ σ)(

dν′

dµ
◦ σ)dµ.

(15)

On the other, by ν-invariance:

ν′(A) =

∫
(χA ◦ σ)dν′

=

∫
(χA ◦ σ)

dν′

dµ
dµ.

(16)

Setting A′ = σ(A), we get for all A′ ∈ B(ΣA) that
∫
A′

(dν
′

dµ ◦ σ)dµ =
∫
A′

dν′

dµ dµ, so

that dν′

dµ ◦ σ = dν′

dµ , µ almost surely. But since σ is ergodic, dν
′

dµ is almost surely equal to
a constant c. Whence c = 1 and we are done.

2.1.7 Lemma 1.29 Revisited

We recall the following. . .

Definition (Baire Space). A Baire Space is a topological space such that every intersec-
tion of a countable collection of open dense sets in the space is also dense.

. . . as well as the classical

Theorem (Baire Category theorem). If X is a complete metric space or a locally compact
Hausdorff space, then it is a Baire space.
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For the first claim, see Munkres [7], chapter 48. For the second, see Dugundji [4],
chapter 11, section 10. Note that Munkres proves the second claim in the special case of
a compact Hausdorff space.

Definition (Topological transitivity). A continuous function f : M → M on a topo-
logical space M is said to be topologically transitive if there exists an x ∈ M such that{
fn(x) : n ∈ N∗

}
is dense in M .

It should be noted that different definitions of topological transitivity exist, for in-
stance replacing N∗ by N, which would be more coherent will the usual notion of orbit.
Our definition, as in [10], even if stronger, insures we have some notion of periodicity
(since for any open set U in the vicinity of x we will then have a k ≥ 1 with fk(x) ∈ U).
It is not clear which notion is used in Bowen’s lecture notes, however this one is sufficient
for our purpose.

We now proceed to proving an equivalent formulation of topological transitivity for
second-countable spaces (found in [10]).

Lemma. Suppose that M is a is second-countable Baire space. A continuous function
f : M → M is topologically transitive if and only if for each pair of open sets U and V
there exists a k ≥ 1 such that f−k(U) intersects V .

Proof. Suppose first that f is transitive and let x ∈M be a point whose orbit
{
fn(x) : n ∈ N∗

}
is dense in M . We first notice that

{
fn(x) : n > m

}
is then dense in M for any m ∈ N.

So there is an m ≥ 1 and an n > m such that fm(x) ∈ V and fn(x) ∈ U . Denoting
k = n−m, we get that fm(x) ∈ f−k(U) ∩ V .

To prove the converse, let {Uj : j ∈ N∗} be a countable basis of open sets of M. Our
hypothesis guarantees that ∪∞k=1f

−k(Uj) is dense in M for any j ∈ N∗. Then

X =

∞⋂
j=1

∞⋃
k=1

f−k(Uj) (17)

is a dense (in particular non-empty) subset of M (because M is a Baire space). On the
other hand, if x ∈ X then for any j ∈ N∗ there is a k ≥ 1 such that fk(x) ∈ Uj . Since
the Uj form a basis of the topology of M, we proved that {fk(x) : k ∈ N∗} is dense in
M.

From this characterisation we deduce the following corollary:

Corollary (Lemma 1.29). Let f : M → M be a continuous topologically transitive
continuous map of a compact metric space M , then there is a point x ∈M such that for
any U 6= ∅ and N > 0 there exists an n ≥ N with Tn(x) ∈ U .

Proof. X being compact metric, it is a second-countable Baire space. Denote by (Ui, i ≥ 1)
a basis for the topology. Fix an N > 0. By the previous lemma,

Vi,N =
⋃
n≥N

T−nUi (18)

is a dense open set in M. Whence, by the Baire Category Theorem,

V =
⋂

(n,i)∈N∗×N∗
T−nUi (19)

is a dense set. Any x ∈ V does the job.
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The very next step in the continuation of the article is to notice that since σ is
bijective, topological mixing implies topological transitivity. This is immediate one more
time by the characterisation above.

2.2 General Thermodynamic Formalism

2.2.1 A few notes on expansivity

Let (X, d) be a compact metric space, recall the following

Definition (expansivity). A homeomorphism T : X → X is called expansive if there
exists ε > 0 such that d(T k(x), T k(y)) ≤ ε ∀ k ∈ Z implies x = y.

In other words, taking the contraposition, if x 6= y, there is a k = k(x, y) such that
T k(x) and T k(y) end up being at a distance superior to ε.

We prove Proposition 2.5 in more detail and explain an interesting consequence, that
connects the first two chapters of Bowen’s lecture notes.

Lemma (Proposition 2.5). Suppose T : X → X is a homeomorphism with expansive
constant ε. Then hµ(T ) = hµ(T,D) whenever µ ∈MT (X) and diam(D) ≤ ε.

Proof. Set Dn = TnD ∨ . . .D ∨ . . . T−nD. Suppose that diam(Dn) does not go to zero.
Considering that Dn+1 is finer than Dn there would then exist two distinct points
x 6= y such that both x and y are in the same element of Dn for each n, but then
d(Tn(x), Tn(y)) ≤ ε for all n ∈ Z, a contradiction. Thus diam(Dn) goes to 0. By
proposition 2.4, hµ(T ) = limnhµ(T,Dn). By Lemma 2.2(c), hµ(T,Dn) = hµ(T,D).

We’re now in a position of showing that sµ, defined as hµ(σ,U) for U = {U1, . . . , Un}
with Ui = {x ∈ ΣA x0 = i} depends exclusively of σ and not on both σ and U . Indeed,
notice that the Ui form a partition of (open and compact) sets of ΣA. Thus for i 6= j we
have that d(Ui, Uj) > 0. Taking c strictly smaller than the minimum of all such values,
we find that σ is expansive with expansivity constant c (each component being shifted
to zero). Considering a usual metric on ΣA we can take n large enough such that each
element of Dn = σnU ∨ . . .U ∨ . . . σ−nU has diameter less or equal to c (this is coherent
with the definition of hµ(σ,U) because by invariance one can shift this whole expression
by σ−n; we already used this trick implicitly in the lemma above). By the lemma, we
get sµ = hµ(σ). Hence, sµ depends on σ only, as a σ-invariant measure.

The reader interested in further properties of expansivity in relation to entropy and
equilibrium states can (should!) refer to chapters 9 and 10 of [10].

2.2.2 Connecting the two notions of pressure P (φ)

We outline how to reconcile both notions of pressure. For this, using the notation of
general thermodynamic formalism (chapter 2), we must prove that P (φ,U) = P (φ) on
ΣA, where U := {U1, . . . , Un} with Ui = {x : x0 = i} and P (φ) = limdiam(V)→0 P (φ,V).

We introduce the following notation for j ∈ Z

U j = {U j1 , . . . , U jn} with U ji = {x : xj = i}. (20)

In other terms U j is a partition and open covering of (infinite) words by value at
position j. We further introduce for j ∈ Z and k ≥ 1

12



U j,k = U j ∨ σU j . . . ∨ σk−1U j (21)

In other terms U j,k is a partition and open covering of words whose k letters starting
at position j are fixed.

The philosophy is the following: by a simple bijection, one can prove that for a fixed
k ≥ 1

Z(φ,U j1,k) = Z(φ,U j2,k) (22)

for any j1 and j2. This translates into

P (φ,U j1,k) = P (φ,U j2,k) (23)

for any j1 and j2.
Then, by an argument using uniform continuity and easy combinatorics on the par-

tition function, one shows that

P (φ,U j,1) = P (φ,U j,k) (24)

for any k ≥ 1. With our terminology, we have U=U0,1, and we have shown how to
successively reduce the diameter of the partition to zero (by increasing the length of the
word and shifting it left) without changing the value of the pressure. Whence our stated
equality holds.

2.2.3 Limiting measures as invariant measures

We explain in more details the discussion given before Lemma 2.15 in Bouwer’s lecture
notes and rephrase it in a more general set-up. We refer the reader to section 1.3 and to
chapter 2 of [10].

Lemma (continuity of push-forward). Let (M,d) be a metric space and f : M → M
a continuous function. Then the pushforward application f∗ : M1(M) → M1(M) is
continuous with respect to the weak*-topology.

Proof. Let Φ = {φ1, . . . , φn} be any family of continuous bounded functions on M . Since
f is continuous, Ψ = {φ1 ◦f, . . . , φn ◦f} also is a family of continuous bounded functions
on M . But for µ, ν in M1(M) we also have that

|
∫
φid(f∗µ)−

∫
φid(f∗ν)| = |

∫
(φi ◦ f)d(f∗µ)−

∫
(φi ◦ f)d(f∗ν)|, (25)

which shows that f∗(V (µ,Ψ, ε) ⊂ V (f∗µ, φ, ε) for all µ, Φ and ε > 0. This shows that f∗
is continuous for the weak*-topology.

For ν in M1(M) we are lead to study the limiting points of series

µn =
1

n

n−1∑
j=0

f j∗ν. (26)

For (M,d) compact, such limiting points always exist, M1(M) being compact metric.
We have the general

13



Theorem. Any limiting point µ of a sequence µn as in (26) is a fixed point of f∗. In
other words, µ is an invariant measure.

Proof. Suppose µnk
→ µ as k →∞. Then for any ε > 0 and any family Φ = {φ1, . . . , φn}

of continuous bounded functions we have

| 1

nk

nk−1∑
j=0

∫
(φi ◦ f j)dν −

∫
φidµ| < ε/2 (27)

for each i and each k large enough. By our lemma (continuity of the push-forward):

f∗µ = f∗( lim
k→∞

1

nk

nk−1∑
j=0

f j∗ν)

= lim
k→∞

1

nk

nk∑
j=1

f j∗ν.

(28)

Now observe that

| 1

nk

nk−1∑
j=0

∫
(φi ◦ f j)dν −

1

nk

nk∑
j=1

∫
(φi ◦ f j)dν| =

1

nk
|
∫
φidν −

∫
(φi ◦ fnk)dν|

≤ 1

nk
sup |φi|

(29)

with this expression being smaller than ε/2 for all i and any k sufficiently large. We
thus get

| 1

nk

nk∑
j=1

∫
(φi ◦ f j)dν −

∫
φidµ| < ε (30)

for each i and any k sufficiently large. This reads

1

nk

nk∑
j=1

f j∗ν → µ as k →∞. (31)

We showed above that this sequence converges to f∗µ. By unicity of the limit, f∗µ = µ
follows.
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3 Errata for the Article

The convention “line minus x” is used to indicate one should go to line x counting from
the bottom of the page.

• Page 6, line 1. One should read: i = 0, . . . ,m− 1 instead of i = 0, . . . ,m.

• Page 7, in the statement of Lemma 1.5. One should specificy ψ, φ ∈ FA.

• Page 10, line 8. The right parenthesis should be moved to before f(y).

• Page 11, lines 5, 6 and 7. The constants u1 and u2 should be interchanged.

• Page 14, line 1. Read f ∈ C (Σ+
A) instead of f ∈ C (ΣA)∗.

• Page 15, in the statement of Theorem 1.16. One should read: µ is the unique

Gibbs measure for φ ∈ FA ∩ C
(

Σ+
A

)
.

• Page 16, lines 18, 19 and 20. We’re actually dealing with pull-backs. In Bowen’s
article, the usual convention T∗µ and T ∗µ for the push-forward and pull-back of
a measure µ by a function T have been swapped, except here. Indeed (using the
standard convention), for any A borelian we have∫

χAd((σ−1)?µ
′) =

∫
χA ◦ σ−1 dµ′

=

∫
(χA ◦ σ−1)fdµ

=

∫
χA(f ◦ σ)d((σ−1)?µ).

(32)

• Page 19, line -3. One should read x instead of y in the second term on the right-
hand side of the inequality.

• Page 21, line 3. Replace log ai by log pi.

• Page 20, line 4. The inequality can be replaced by an equality.

• Page 21, line -6. The inequality can be replaced by an equality.

• Page 22, lines 3, 4. Replace c2 by c1.

• Page 25, line 25. One should read “. . . topological mixing is stronger than topolog-
ical transitivity . . . ”.

• Page 25, line -7. Replace u (w) by u (z)

• Page 31, line 4. Read m+n
m instead of m

m+n .

• Page 32, 4th line of the proof of Lemma 2.6. Cross out “ . . . = nµ(T )”.

• Page 35, line -2 of the proof of Lemma 2.11. The inequality should be crossed out
and replaced by: . . . whence, this holding for any Γm ∈Wm(U), we get

hµ(T,D) +

∫
φ dµ ≤ logM +

1

m
logZm(φ,U). (33)
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• Page 37, line 6. The equality should be replaced by an inequality because Γ, Γ2,
Γ3, . . . are note necessarily disjoint.

• Page 37, lines 13 and 14. The notation ΓN for “ΓN the set of U∗ so obtained”
overlaps with the previous distinct notion of Γn = {U1U2 . . . Un : U i ∈ Γ}. Note
ΓN instead for instance.

• Page 41, line -6. The inequality can be replaced by an equality.

• Page 43, line 3. Replace 2 by 3 (using the triangular inequality).
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4 Summary of chapter 1: Gibbs Measures

4.1 Construction of Gibbs Measures and a few further properties

The goal of this first chapter is to prove the following

Theorem (Existence of Gibbs measures, preliminary formulation). Suppose φ : Σn → R
and there are c > 0 and α ∈ (0, 1) so that varkφ ≤ cαk for all k. Then there is a unique
µ ∈M(Σn) for which one can find constants c1 > 0, c2 > 0, and P such that

c1 ≤
µ{y : yi = xi ∀ i = 0, . . . ,m− 1}

exp(−Pm+
∑m−1
k=0 φ(σkx))

≤ c2 (34)

for every x ∈ Σn and m ≥ 0.

Such functions are denoted by φ ∈ FA and the measure µ or µφ associated to φ
is called a Gibbs measure. The discussion is generalized by considering ΣA instead for
a topologically mixing system (σ : ΣA → ΣA is topologically mixing if for U , V open
subsets of ΣA there is an N such that σmU ∩ V 6= ∅ for m ≥ N). Topological mixing is
proven to be equivalent to there being an M > 0 such that AM > 0. The preliminary
formulation is a particular case of the following theorem, with A a matrix whose entries
are 1’s.

Theorem (Existence of Gibbs measures, general version). Suppose ΣA is topologically
mixing and φ ∈ FA. There is a unique σ-invariant Borel probability measure µ on ΣA
for which one can find constants c1 > 0, c2 > 0 and P such that

c1 ≤
µ{y : yi = xi ∀ i = 0, . . . ,m− 1}

exp(−Pm+
∑m−1
k=0 φ(σkx))

≤ c2 (35)

for every x ∈ ΣA and m ≥ 0. Furthermore, φ is ergodic.

The strategy to tackle the proof, loosely speaking, will be to reduce the problem to
Σ+
A with φ ∈ FA ∩ C (Σ+

A), solve it on Σ+
A (proceeding to standard identifications, see

section 2), and then extend the obtained measure back to ΣA.
This strategy is motivated by the following few considerations/results.

Definition (homology). Two functions ψ, φ in C (ΣA) are homologous with respect to
σ if there is a u ∈ C (ΣA) so that ψ(x) = φ(x)− u(x) + u(σx).

Lemma. If φ1, φ2 are homologous and Gibbs’ theorem holds for φ1, then it holds for φ2

for c1, c2, and P unchanged.

Lemma. If φ ∈ FA, then φ is homologous to some ψ ∈ FA with ψ(x) = ψ(y) whenever
xi = yi for all i ≥ 0.

We recall the defnition of the transfer operator L = Lφ on C (Σ+
A) for φ ∈ C (Σ+

A):

(Lφf)(x) =
∑

y∈σ−1x

eφ(y)f(y). (36)

The “atomic bomb to crack a nut” that will solve our problem is the Schauder-
Tychonoff theorem Let E be a non-empty compact convex subset of a locally convex
topological vector space, then any continuous function G : E → E has a fixed point. It is
implemented twice to prove the central
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Theorem (Ruelle’s Perron-Frobenius Theorem). Let ΣA be topologically mixing, φ ∈
FA ∩ C (Σ+

A) and L = Lφ as above. There are λ > 0, h ∈ C (Σ+
A) with h > 0 and

ν ∈M(Σ+
A) for which Lh = λh, L∗ν = λν, ν(1) and

lim
m→∞

∥∥λ−mLmg − ν(g)h
∥∥ = 0 for all g ∈ C (Σ+

A). (37)

Since L is a positive operator with L1 > 0, one gets by the Riesz-Markov-Kakutani
theorem that G(µ) = (L∗µ)−1L∗µ ∈ M(Σ+

A) for µ ∈ M(Σ+
A). G is trivially seen to

be continuous. One can apply the Schauder-Tychonoff theorem to the set E =M(Σ+
A)

and find a probability measure ν such that G(ν) = ν. In other words L∗ν = λν with
λ = (L∗ν)(1).

The remainder of the proof of Ruelle’s theorem consists in a series of very technical
lemmas, the most important of which we state here. To this end, we analyse then set

Λ = {f ∈ C (Σ+
A) : f ≥ 0, ν(f) = 1, f(x) ≤ Bmf(x′) when xi = x′i for all i = 0, . . . ,m}

(38)
where Bm = exp(

∑∞
k=m+1 2bαk) and b > 0, α ∈ (0, 1) are such that varkφ ≤ bαk for all

k ≥ 0. One then shows

Lemma. There is and h ∈ Λ with Lh = λh and h > 0.

Part of the proof consists of showing that the operator λ−1L is defined on Λ, and
that Λ is compact by means of the Ascoli-Arzela theorem. One then applies Schauder-
Tychonoff once more to λ−1L.

We now have the necessary tools in hand to construct an invariant measure on ΣA.
For φ ∈ FA ∩ C (Σ+

A) and ν, h, λ given by Ruelle’s Perron-Frobenius Theorem, µ = hν
is a probability measure on Σ+

A with µ(f) = ν(hf) =
∫
f(x)h(x)dν(x). Showing that σ

is invariant is pretty straight-forward:

Lemma. µ is invariant under σ : Σ+
A → Σ+

A

Proof. This is equivalent to showing that µ(f) = µ(f ◦σ) for any f ∈ C (Σ+
A). First note

that

((Lf) · g)(x) =
∑

y∈σ−1x

f(y)g(x)

=
∑

y∈σ−1x

f(y)g(σy)

= L(f · (g ◦ σ))(x),

(39)

This yields

µ(f) = ν(hf)

= ν(λ−1Lh · f)

= λ−1ν(L(h · (f ◦ σ)))

= λ−1(L∗ν)(h · (f ◦ σ))

= ν(h · (f ◦ σ))

= µ(f ◦ σ).

(40)
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Extending µ to a σ-invariant measure µ̃ on ΣA from Σ+
A is an important but simple

technicality that is discussed in more detail in section 2. It should be (crucially) noted
that µ̃(f) = µ(f) for f ∈ C (Σ+

A) (with the usual identification of seeing a function f on
ΣA such that f(x) = f(y) when xi = yi, i ≥ 0 as a function on Σ+

A, and conversely),
which is why we shall say that µ̃ “extends” µ. In the sequel, we shall denote µ indifferently
for µ or µ̃.

The very next step is showing that µ is mixing for σ : ΣA → ΣA and thus ergodic.

One is finally left with the culmination of the exposition, which is showing that µ (or
µφ) is indeed a Gibbs measure (satisfying the inequality with the constants c1 and c2),
and finally that it is the unique such measure. That µ is indeed a Gibbs measure uses
the technical machinery developed for Ruelle’s Perron-Frobenius theorem. Unicity uses
an “algebra - monotone class” argument followed by a Radon-Nikodym argument and is
mostly classical.

A few more results are discussed in the final section of chapter 1 of Bowen’s lecture
notes. We shall simply mention that conditions under which µφ = µψ are provided (for
ΣA topologically mixing and φ, ψ in FA) and present one last theorem.

To this end, we shall introduce the space Hα of functions f ∈ C (ΣA) such that
varkf ≤ cαk for some c and fixed α. Hα is then a Banach space under the norm

‖f‖α =‖f‖+ sup
k≥0

(α−kvarkf). (41)

Theorem (Exponential Cluster Property). For a fixed α ∈ (0, 1) there are constants
D > 0 and γ ∈ (0, 1) such that

|µ(f · (g ◦ σn))| ≤ D‖f‖α‖g‖α γ
n (42)

for all f , g in Hα, n ≥ 0.

4.2 The Variational Principle

The Gibbs measures µφ for φ ∈ FA are the only ones satisfying a variational principle.
A series of definitions is needed at first. It should be kept in mind that these definitions
and properties are special cases of the more general theory of thermodynamics presented
in the next section. They are fully sufficient, however, for the purpose of this variational
principle.

For a (measurable) partition C = {C1, . . . ;Ck} of a probability space (X,B, µ), the
entropy of C is defined as

Hµ(C) =

k∑
i=1

(−µ(Ci) logµ(Ci)). (43)

If D is another finite partition of X, C ∨ D := {Ci ∩Dj : Ci ∈ C, Dj ∈ D}. Hµ(C ) ≥
0 and the calculus that results from this definition is based on the concave positive
function φ(x) = −x log(x) with φ(0) = 0, x ∈ [0, 1] and sub-additivity: one shows that
Hµ(C ∨ D) ≤ Hµ(C ) +Hµ(D).
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Lemma. If D is a finite partition of (X,B, µ) and T : X → X a µ-invariant measurable
function, then the limit

hµ(T,D) = lim
m→∞

1

m
Hµ(D ∨ T−1D . . . ∨ T−m+1D) (44)

exists in [0,∞).

Definition (entropy of µ). For µ ∈Mσ(ΣA) and the partition U = {Ui, . . . , Un} where
Ui = {x ∈ ΣA : x0 = i}, the quantity s(µ) := hµ(σ,U) is called the entropy of µ.

We now define pressure directly translating the given definitions leading to it in the
language of general thermodynamic formalism (chapter 2 of Bowen’s notes).

For this partition (as well as open cover) U we can define the set Wm(U) of all
m-strings U = Ui0Ui1 . . . Uim−1 . One writes m = m(U) and define

X(U) = {x ∈ X : σkx ∈ Uik for k = 0, . . . ,m− 1}. (45)

This set will be non-empty if and only if Aik,ik+1
= 1 for k = 0, . . . ,m− 1. Define then

Sm(φ)(U) = sup


m−1∑
k=0

φ(σkx) : x ∈ X(U)

 (46)

and Smφ(U) = −∞ if X(U) = ∅. Finally define the partition function

Zm(φ) :=
∑

U∈Wm(U)

exp(Smφ(U)). (47)

Lemma. For φ ∈ C (ΣA), the limit P (φ) := limm→∞
1
m logZm(φ) exists and is called

the pressure of φ.

Theorem. Suppose φ ∈ C (ΣA) and µ ∈Mσ(ΣA). Then

s(µ) +

∫
φdµ ≤ P (φ). (48)

Theorem (Variational Principle). Let φ ∈ FA, ΣA topologically mixing and µφ the
Gibbs measure of φ. Then µφ is the only µ ∈Mσ(ΣA) for which

s(µ) +

∫
φdµ = P (φ). (49)

The proof entails showing that actually P (φ) = P , where P is given with the constants
c1 and c1 for the Gibbs measure µφ. The equality is then showed to be verified for µφ.
Supposing another measure ν satisfied the variational principle, one yields a contradiction
by first supposing ν singular to µ and that ν = µ otherwise. The proof is tricky and
very technical.
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5 Summary of chapter 2: General Thermodynamic
Formalism

The objective of the second chapter is to rephrase the machinery developed in the first
chapter in a more general set-up called general thermodynamic formalism. Entropy and
pressure notions are given and a variational principle is derived.

Definition (entropy). Let T be a measure-preserving endomorphism of a probability
space (X,µ) and D denote a finite partition of X. The entropy of µ with respect to T is
defined by

hµ(T ) = sup
D
hµ(T,D) (50)

where D ranges over all finite partitions of X.

Definition (conditional entropy). Hµ(C |D) := Hµ(C ∨ D)−Hµ(D).

Intuitively, conditional entropy measures the additional information given by parti-
tion C once we know the information given by partition D. Hµ(C |D) ≥ 0. If C = D it
is worth zero.

A “calculus of entropy” is then developed, that culminates in the following lemma,
the proof of which essentially relies on the Lebesgue ε for finite open coverings of compact
metric spaces.

Lemma. Suppose T : X → X is a continuous map on a compact metric space, µ ∈
MT (X) and that Dn is a sequence of partitions with diam(Dn)→ 0, then

hµ(T ) = lim
n→∞

hµ(T,Dn) (51)

Using the concept of expansivity, the entropy s(µ) previously defined for ΣA is shown
to be equal to the more general concept of entropy of this chapter: s(µ) = hµ(σ). See
section 2.

The next step is to generalize the notion of pressure. We work with a continuous
map T : X → X on a compact metric space X and a φ ∈ C (X). For any open cover U
of X,we define the set of m-strings Wm(φ), X(U), Sm(φ)(U) in exactly the same way as
in the first chapter. One then says that Γ ⊂ Wm(U) covers X if X = ∪U∈ΓX(U). One
finally defines the partition function

Zm(φ,U) = inf
Γ

∑
U

exp(Smφ(U)) (52)

where Γ runs over all subsets of Wm(U) covering X. It’s important to notice that in
the standard open cover U = {U1, . . . , Un} with Ui = {x : x0 = i} of first chapter of the
lecture notes, Wm(U itself forms a partition of X (σ being a homeomorphism), whence
the infimum is superfluous. Two lemmas are derived

Lemma. The limit

P (φ,U) = limm→∞
1

m
logZm(φ,U) (53)

exists and is finite.
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Lemma. The limit
P (φ) = limdiam(U)→0P (φ,U) (54)

exists (but may be infinite) and is called pressure of φ.

For now, the pressure P (φ) defined in chapter 1 of the lecture notes with φ in C(ΣA) is
what we defined here as P (φ,U). For a direct explanation showing why both definitions
coincide, we refer to section 2. Expos-facto, we can show this is the case after exposing
the culmination of our theory:

Theorem (Variational Principle). Let T : X → X be a continuous map on a compact
metric space and φ ∈ C (X). Then

supµ∈MT (X)

(
hµ(T ) +

∫
φdµ

)
= PT (φ). (55)

Let’s rephrase the variational principle of chapter 1 in our new notation. We showed
in section 2 that s(µ) = h(σ,U) = hµ(σ) for the partition U = {U1, . . . , Un} where
Ui = {x : x = i} of ΣA. Then for any σ-invariant measure µ on ΣA with φ ∈ FA one
has

hµ(σ) +

∫
φdµ ≤ PT (φ,U) (56)

with equality if and only if µ = µφ.
By comparing both variational principles, and taking the notations of the second

chapter one concludes that PT (φ,U) = PT (φ), and so we showed a posteriori that the
definition of pressure from the first chapter is compatible with the one from the second
chapter.
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