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Abstract

Dear Students, I shall publish possible solutions to the exercises in this file. This is an
“ongoing project”, where solutions will be updated, complemented & corrected along the
semester. You’re encouraged to work with the electronic version of this file.

For the present course, and beyond the lecture notes, I have selected two of the “classics”.
Durret’s “Probability, Theory and Examples” [1] is more famous than Jean-François le Gall’s
lecture notes at Ecole Normale “Intégration, Probabilités et Modèles Aléatoires” [4]. Both are
excellent, but I would personally favor the latter, which is more compact and gives the whole
spectrum of essential tools in an integrated, systematic manner.

As an advice for your future study of stochastic analysis: use Le Gall’s (this author rocks!)
book [3], which is self-contained and uncompromising. It is actually not easy to find a book that
strikes the “right balance” between length and precision. The book by Karatzas & Shreve [2] is
excellent too, but one easily gets lost in measure-theoretic considerations. Another advanced
reference you may wish to use in your later study of Brownian motion and stochastic analysis
is Revuz & Yor’s “Continuous Martingales and Brownian Motion” [5]. Except for reading
the literature, do the usual thing: type your questions on a search engine, check the Stack
Exchange, use Wikipedia and other blogs.
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1 Solutions - Sheet 1

1.1 Ex 1.1

For part (a), one could take fore example F1 = {∅, {1, 2}, {3, 4}} and F2 = {∅, {1, 3}, {2, 4}}.

In part (b), taking A = F1 ∪ F2, we have that σ(A) = P(Ω). By setting (for example)

P1({1}) = P1({2}) = P1({3}) = P1({4}) = 1/4

and

P2({1}) = P2({4}) = 1/8

P2({2}) = P2({3}) = 3/8,

we have that P1 6= P2.

Note however that if A were a π-system, these probabilities would then be equal.

1.2 Ex 1.2

• B = A t B\A ,the symbol t denoting a disjoint union . Then P(B) = P(A) + P(B\A) ≥
P(A).

•
⋃∞
n=1An =

⊔∞
n=1(An\

⋃n−1
k=1 Ak). This immediately yields

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P

(
An\

n−1⋃
k=1

Ak

)
≤
∞∑
n=1

P(An)

(term by term inclusion for the inequality).

• Let Cn := An\An−1. A0 = ∅ by convention. Then ∪nAn = ∪nCn and the Cn are disjoint.
Whence

P

( ∞⋃
n=1

An

)
= P

( ∞⋃
n=1

Cn

)
=
∑
n∈N

P(Cn)

= lim
N→∞

↑
N∑
n=0

P(Cn)

= lim
N→∞

↑ P(An)

• Let Bn = A1\An for n ≥ 1. Then B1 ⊂ B2 ⊂ . . . Bn ⊂ Bn+1 ⊂ . . .. We have A1 =⋃∞
n=1Bn t

⋂∞
n=1An. As a consequence

P(A1) = P(

∞⋃
n=1

Bn) + P(

∞⋂
n=1

An)

= lim
n→∞

↑ P(Bn) + P(

∞⋂
n=1

An).

So

P(A1) = lim
n→∞

↑ (P(A1)− P(An)) + P(

∞⋂
n=1

An),

which implies

lim
n→∞

↓ P(An) = P(

∞⋂
n=1

An)
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1.3 Ex 1.3

P being a probability on F0, we have that P(∅) = 0 and P(Ω) = 1. So ∅,Ω ∈ F0.

If A ∈ F0, we have P(A) ∈ {0, 1}, so P(Ac) = 1− P(A) ∈ {0, 1}. Hence Ac ∈ F0.

Let (An)n∈N be a sequence of elements of F0. If P(An) = 0 for all n ∈ N, then

P

(⋃
n∈N

An

)
≤
∑
n∈N

P(An) = 0,

implying
⋃
n∈N An ∈ F0. Similarly, if there is an n0 such that P(An0

) = 1, then

1 = P(An0
) ≤ P

(⋃
n∈N

An

)
≤ 1.

Whence P
(⋃

n∈N An
)

= 1 and thus
⋃
n∈N An ∈ F0.

1.4 Ex 1.4

Several solutions have been suggested (see for instance 14). I’ll explain here the one I think is most
“natural”, and which allows a mental representation of what is going on.

The idea is that of a “patchwork”, where every piece of the patchwork (or rug, or cloth) lights up
or remains turned off (so alternatively is labelled 0 or 1 if one prefers). Every configuration of 1’s
(or light-up pieces) would be one element of the sigma algebra.

One can start by grouping elements of the (finite) sigma-algebra by (distinct) pairs Ai, A
c
i where

i = 1, . . . ,m. It is then immediate that C = {
⋂m
i=1Bi | Bi ∈ {Ai, Aci}} ⊆ F is a disjoint covering

of T . The empty set might appear several times, in which case you keep just one of them (which
is of course the convention in set theory).

Now by construction, every element of the initial sigma algebra G can be expressed in a unique
way as a disjoint union of elements of C (to prove mentally: elements of C are disjoint and cover
T ). An m-tuple of zeros and ones corresponds to one element (with the possibility of several tuples
yielding the empty set). Uniqueness also follows immediately (try and explain why: the key is
“disjoint and generating”).

Note: Please be aware that my initial discussion of zeros and ones (for each piece of the patch-
work) does not correspond to the m-tuple of zeros and ones discussed in the previous paragraph
(in the first case, I am talking about elements of the partition, in the second, of a decision process
of elements of the sigma algebra).

The converse part of the exercise should now be a triviality in light of the discussion above.

1.5 Ex 1.5

• DefineA1 = {(a, b) | a, b ∈ Q}. Immediately, σ(A1) ⊆ B. Since Card(N×N) = Card(N), A1

is countable. If U ⊆ R is open, then for all x ∈ U , there is a, b ∈ Q such that x ∈ (a, b) ⊆ U .
So U can be written as a countable union of elements of A1. Whence B ⊆ σ(A1). Thus
σ(A1) = B.

• Define A2 = {[a, b] | a, b ∈ Q. Since [a, b]c is open, we immediately find that σ(A2) ⊆ B.
Note again that A2 is countable. As above, for U open, x ∈ U , there is a, b ∈ Q such that
x ∈ [a, b] ⊆ U . So U can be written as a countable union of elements of A2. Whence
B ⊆ σ(A2). We are done.
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• A3 := {(−∞, t) | t ∈ Q}. Such a set (−∞, t) is open, so σ(A3) ⊆ B. Now for t1, t2 ∈ Q,
t1 < t2 the set [t1, t2) = (−∞, t2)\(−∞, t1), so [t1, t2) ∈ σ(A3). Again, an open set U ∈ R
can be covered by a countable union of sets [t1, t2) with t1, t2 ∈ Q. So B ⊆ σ(A3) and thus
σ(A3) = B.

• Same reasoning as in the list point, noting that (∞, t] is closed and operating a countable
cover of the type (t1, t2] with t1, t2 ∈ Q.

1.6 Ex 1.6

Suppose that ∑
x∈[0,1]

px = 1, ♠

then for all n ≥ 1 there exists a finite set Sn ∈ [0, 1] such that

1− 1

n
≤
∑
x∈[0,1]

px ≤ 1.

Consider

x0 ∈

⋃
n≥1

Sn

c

with px > 0. There is an m such that px >
1
m . Then∑

x∈Sm∪{x0}

> 1− 1

m
+

1

m
= 1,

contradicting ♠. Note we are summing over a finite set.
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2 Solutions - Sheet 2

2.1 Ex 2.1

This exercise is mostly a question of definition and playing around. Not the sexiest exercise either,
but it helps you get your hands dirty.

We recall that B(R) = σ ({[−∞, a), a ∈ R} ∪ {(b,∞], b ∈ R})

Claim 1. B(R) ⊆ R ∩ B(R), the right-hand side denoting the trace sigma algebra of B(R) on R.

Proof. For a, b ∈ R with a < b one has (a, b) = [−∞, b) ∩ (a,∞] ∈ B(R).

But (a, b)∩R = (a, b) ∈ B(R) and by exercise 1.5, we know all such sets generate B(R). So B(R) ⊆
R ∩ B(R) since B(R) is a sigma-algebra on R containing the generator {(a, b) | a < b; a, b ∈ R} of
B(R).

Claim 2. {−∞},{∞} ∈ B(R) (and thus R ∈ B(R)).

Proof. {−∞} =
⋂
n∈N[−∞,−n], {+∞} =

⋂
n∈N[n,+∞] and R = R\{−∞,+∞}.

Claim 3 B(R) = B(R) t (B(R) ∪ {−∞}) t (B(R) ∪ {+∞}) t (B(R) ∪ {−∞,+∞}).

Proof. Any set on the right-hand side is in B(R) by our two previous claims and all these sets form
a sigma algebra (verify! trivial).

CONSEQUENCE: B(R) ∩ R ⊆ B(R) and thus B(R) ∩ R = B(R).

Now back to our exercise. X : (Ω,F)→ (R,B(R)).

“⇒ ”:

• {−∞} ∈ B(R)⇒ X−1({−∞}) ∈ F .

• {+∞} ∈ B(R)⇒ X−1({+∞}) ∈ F .

• A ∈ B(R)⇒ A ∈ B(R)⇒ X−1(A) ∈ F

“⇐ ”:

By our claim above, a set A ∈ B(R) can be split into a set Ã ∈ B(R) ⊆ B(R) with either, both or
none of {+∞} or {−∞}. Then X−1(A) = X−1(Ã) tX−1({−∞}) tX−1({+∞}) ∈ F .

2.2 Ex 2.2

Note that X−1(G) = {X−1(B) | B ∈ G} (set of all preimages of sets).

• X−1(∅) = ∅, so ∅ ∈ X−1(G)

• Let A ∈ X−1(G) then A = X−1(B) for some B ∈ G. Then Ac = (X−1(B))c = X−1(Bc).
Bc ∈ G ⇒ Ac ∈ X−1(G).

• Suppose An ∈ X−1(G) for all n ∈ N, then An = X−1(Bn) for some Bn for all n. Then⋃
An =

⋃
n∈N X

−1(Bn) = X−1(
⋃
n∈N Bn). Since

⋃
n∈N Bn ∈ G, we are done.
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2.3 Ex 2.3

• “ ⇒ ” A projection πk : (X1, . . . , Xn) → Xk :: (x1, . . . , xn) 7→ xk is continuous, whence
B(Rn)− B(R) measurable (see 2.2).

• “ ⇐ ” Let Ai ∈ B(Rn) for i = 1, . . . , n and (X1, . . . , Xn) : (Ω,F) → (Rn,B(Rn)). Then
(X1, . . . , Xn)−1(A1 × · · · × An) = X−1

1 (A1) ∩ . . . X−1
n (An). This intersection is in F by

hypothesis.
Consequently B(Rn) = σ ({A1 × · · · ×An | A1, . . . , An ∈ B(R)})
⊆ {B ∈ Rn | (X1, . . . , Xn)−1(B) ∈ F}. So (X1, . . . , Xn) is F − B(Rn)-measurable.

2.4 Ex 2.4

(a) Consider (Ω,F)
X→ (R,B(R))

f→ (R,B(R)), whereX and f are measurable. Let A ∈ B(R). Then,
f being measurable, we have f−1 ∈ B(R). X being measurable, (f ◦X)−1(A) = X−1(f−1(A)) ∈ F .
So f ◦X is measurable.

(b) By exercise 2.3, the function (X,Y ) : Ω → Rn :: ω 7→ (X(ω), Y (ω)) is measurable. We now
use the following crucial fact, and prove it immediately hereafter: a continuous function is
measurable with respect to the sigma-algebras generated by the topologies at hand.

Proof. Let f : (U,U)→ (V,V) be continuous, with U ,V topologies. In other words f−1(A) ∈ σ(U)
for all A ∈ V. Let Σ = {A ⊆ V | f−1(A) ∈ σ(U)}. Σ is a sigma-algebra and by construction we
have that V ⊆ Σ, whence σ(V) ⊆ Σ. So f−1(σ(V)) ⊆ σ(U).

Now, we simply note that addition, subtraction and multiplication are continuous functions from
R2 to R. As a consequence, by composition and by point (a), the functions at hand are measurable
(for instance: + ◦ (X,Y )).

(c) Division just requires no notice that \ : R×R\{0} → R :: (x, y) 7→ x
y is continuous too, whence

measurable. As a consequence, by (a), X
Y = \ ◦ (X,Y ) is a measurable function too.

2.5 Ex 2.5

Let Xn : (Ω,F)→ (R,B(R)) be measurable functions, for all n. Let X denote the respective four
functions studied. We immediately notice that if Xn converges point-wise surely (for an almost
surely version, wait for a later discussion involving completeness of the underlying probability
space), then it also converges in the lim inf or lim sup since, whence point-wise (surely) convergence
implies measurability.

• The sets of the type [−∞, a) with a ∈ R generate the sigma algebra B(R), so it’s enough to
prove that X−1([−∞, a)) ∈ F for all a ∈ R. This however is clear because

X−1([−∞, a)) = {ω | inf
n∈N

Xn(ω) < a} =
⋃
n∈N

{ω | Xn(ω) < a} ∈ F ,

since all elements on the right-hand side are in F . So X is F − B(R) measurable.

• Exact same reasoning with (for example) sets of the type (a,∞] generating B(R).

• Notice that

X(ω) = lim inf
n→∞

Xn(ω) = sup
n≥0

(
inf
k≥n

Xn(ω)

)
.

By the two bullet points just discussed, the function on the r.h.s is measurable.

• Exact same reasoning with sup and inf reversed.
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2.6 Ex 2.6

Grateful thanks to Wei Jiaye for reviewing and typing my solution.

This is a special case of a construction called product measure on a product space . We solve
and calculate the easiest case, in which all sets Ωi of Ω = Ω1×· · ·×Ωn are finite and the σ-algebra
is P(Ω).
First, we show that P is a probability measure. Set P(∅) = 0.

• For disjoint sets An, we immediately have

P(
∐

An) =
∑
n∈N

P(An).

To show that P(Ω) = 1, we calculate∑
ωi∈Ωi,1≤i≤n

P({(ω1, . . . , ωn)}) =
∑

ωi∈Ωi,1≤i≤n

P1({ω1}) · · ·Pn({ωn})

=

( ∑
ω1∈Ω1

P1({ω1})

)( ∑
ω2∈Ω2

P2({ω2})

)
· · ·

( ∑
ωn∈Ωn

Pn({ωn})

)
= 1

• Consider the projection

πk : (Ω,P(Ω),P)→ Ωk,where ω = (ω1, . . . , ωn) 7→ ωk,

which has a law given by Pk.

P ({ω : πk(ω) = ωk0}) =
∑

ωi∈Ωi,ωk0fixed

P1({ω1}) · · ·Pk({ωk0}) · · ·Pn({ωn}) = Pk({ωk0}.

As a consequence, noting that X̃k = Xk ◦ πk, for any A ∈ B(R) we have

P(X̃k(ω) ∈ A) = P(Xk ◦ πk(ω) ∈ A)

= P({ω : πk(ω) ∈ X−1
k (A)})

= Pk(X−1
k (A))

= Pk(Xk(ωk) ∈ A),

so X̃k has the same law as Xk.

• Finally we prove independence. If we can show that π1, . . . , πn are independent, then X1 ◦
π1, . . . , Xn ◦ πn are independent too. We have

P(ω : π1(ω) ∈ A1, . . . , πn(ω) ∈ An) = P(A1 × · · · ×An)

= P1(A1)P2(A2) · · ·Pn(An)

= P(π1(ω) ∈ A1)P(π2(ω) ∈ A2) · · ·P(πn(ω) ∈ An),

which completes the proof.

2.7 Ex 2.7 - Challenge

See also section 14 for a more elegant solution of point (b) (in my opinion).
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3 Solutions - Sheet 3

3.1 Ex 3.1

• G is a λ-system (or “Dynkin”-system), so Ω ∈ G.

• G being a Dynkin-system, A ∈ G ⇒ Ac ∈ G.

• Let A1, A2, · · · ∈ G, we now show that
⋃
n∈N Ak ∈ G.

Defining Bk = Ak\
⋃k−1
j=1 Aj , we immediately have that

⋃
n∈N Ak =

⊔
n∈N Bk.

But Bk = Ak ∩
(⋂k−1

j=1 A
c
j

)
∈ G, using that G is both a λ- and a π−system. Finally, G being

a λ-system shows that
⊔
n∈N Bk ∈ G.

3.2 Ex 3.2

R :=
{⋃n

j=1Aj | Aj ’s are disjoint cylinder sets, n ≥ 1
}

R is trivially non-empty, and we shall check that (1) A ∈ R ⇒ Ac ∈ R and (2) R is closed by
finite intersection.

1. If A is a cylindrical set, it can be written A = X1 × X2 × . . . Xn × {0, 1}N for a certain n
with X1, . . . , Xn ⊆ {0, 1}. Then by a dictionary-type logic, one has that

Ac = Xc
1 × {0, 1}N tX1 ×Xc

2 × {0, 1}N t . . . X1 ×Xn−1 ×Xc
n × {0, 1}N ∈ R.

2. Let A and B be two cylindrical sets with A = X1 ×X2 × . . . Xn × {0, 1}N, B = Y1 × Y2 ×
. . . Yn × {0, 1}N, with the Xi and Yi subsets of {0, 1} as above. Then

A ∩B = (X1 ∩ Y1)× · · · × (Xn ∩ Yn)× {0, 1}N ∈ R.

Note that if any of these intersections X1 ∩ Yi is the empty set, then A∩B is the empty set.

3. We check (1) for an element of R. Consider to this end A = A1tA2 · · ·tAn, where the Ak ’s
are disjoint cylinder sets. We have (by elementary set theory) that Ac = (A1)c ∩ · · · ∩ (An)c

and by taking the complementary as above, one can write

(Ak)c = Ck1 t · · · t Ckmk

where the Ckj are disjoint cylinder sets for fixed k and all j = 1, . . . ,mk. Going over to
indicator notation we have that

1Ac = 1(A1)c . . . 1(An)c = (1C1
1

+ · · ·+ 1C1
m1

) . . . (1Cn1 + · · ·+ 1Cnmn ) =

m1∑
j1=1

· · ·
mn∑
jn=1

1C1
j1
. . . 1Cnjn

1C1
j1
. . . 1Cnjn corresponds to the indicator of C1

j1
∩· · ·∩Cnjn , which is a cylinder set (see above).

All of them are disjoint. Thus Ac ∈ R.

4. We check (2) for an element of R. For this take A = A1 t · · · t An and B = B1 t · · · t Bm
for disjoint cylinder sets A1, . . . , An and B1, . . . , Bm. Then from expanding

1A∩B = (1A1 + · · ·+ 1An)(1B1 + · · ·+ 1Bm),

we can see that Ai ∩ Bj (1 ≤ i ≤ n, 1 ≤ j ≤ m) are disjoint cylinder sets whose union is
A ∩B .
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3.3 Ex 3.3

Grateful thanks to Wei Jiaye for reviewing and typing my solution.

First, since R is non-empty, there exists an A ∈ R, and thus Ac ∈ R. This implies that T =
A tAc ∈ R (hence ∅ = T c ∈ R). Let µ : R→ [0,∞] be a countably additive map, i.e.,

µ

(∐
n∈N

An

)
=
∑
n∈N

µ(An), where An ∈ R ∀n ∈ N, and
∐
n∈N

An ∈ R

• For any A ∈ P(T ), we have A ⊆ T, T ∈ R, and µ(T ) <∞, so µ∗(A) <∞.

• For any A ⊂ B with A,B ∈ P(T ), a cover of B is also a cover of A, so µ∗(A) ≤ µ∗(B) is
trivial.

• Let A ∈ R, then µ∗(A) ≤ µ(A) holds trivially. To show the other side, it suffices to show
that for any (An)n∈N such that A ⊆

⋃
n∈N An, we have µ(A) ≤

∑
n∈N µ(An). Indeed, let

Bn := An ∩A ∈ R, and Cn := Bn \
(⋃n−1

j=1 Bj

)
∈ R, so (Cn)n∈N forms a disjoint cover of A.

Since for any n ∈ N, Cn ⊂ An, we have µ(Cn) ≤ µ(An) (because µ(An\Cn) ≥ 0, and using
countable additivity again), the countable additivity of µ implies

µ(A) =
∑
n∈N

µ(Cn) ≤
∑
n∈N

µ(An).

• Fix ε > 0. For any countable family (An)n∈N of subsets of T , there exists (Aik)(i,k)∈N×N such
that

Ak ⊆
⋃
i∈N

Aik, and
∑
i∈N

µ(Aik) ≤ µ∗(Ak) +
ε

2k
, ∀ k.

Note that
⋃
k∈N Ak ⊆

⋃
(i,k)∈N×N A

i
k, which implies

µ∗

(⋃
k∈N

Ak

)
≤
∑
k∈N

∑
i∈N

µ(Aik) ≤
∑
k∈N

(
µ∗(Ak) +

ε

2k

)
=
∑
k∈N

µ∗(Ak) + ε.

3.4 Ex 3.4

A pseudometric d̃ distinguishes itself from a metric d : X ×X → R in that d(x, y) = 0 ⇒ x = y
whereas d̃(x, y) = 0 could happen for x 6= y (so we don’t have to prove the former condition).

Just to illustrate this behaviour, with the symmetric difference A∆B = A\B t B\A, we could
imagine that µ∗(A\B) = µ∗(B\A) = 0 (⇒ µ∗(A∆B) = 0) with both sets being non-empty (and
thus A 6= B). This happens all the time: think o the Lebesgue measure on R with the Borel
sigma-algebra (implying µ∗ = µ on B(R)). For example take A = Q ∪ [−1, 1] and B = Q ∪ [−1, 1].
Then A∆B = {x ∈ Q | |x| > 1}, µ(A∆B) = 0.

• d(A,A) = µ∗(A∆A) = µ∗(∅) = 0. The last equality comes from the fact we have assumed
that T ∈ R (exercise 3), whence ∅ ∈ R. The last equality requires a bit of justification. by
hypothesis T ∈ R whence ∅ ∈ R too. By countable additivity, the equality follows.

• A∆B = B∆A whence d(A,B) = d(B,A).

• A\B ⊆ (A\C) ∪ (C\B) and B\B ⊆ (B\C) ∪ (C\A). Consequently, taking ”unions on
both sides” yields A∆B ⊆ (A∆C) ∪ (C∆B). So µ∗(−) ≤ µ∗(−) + µ∗(−) ⇒ d(A,B) ≤
d(A,C) + d(C,B).
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3.5 Ex 3.5

See also chapter 14 for an original alternative solution.

Take Ω = (0, 1) and the pi-system Π = {(0, t) | 0 < t < 1}. Define µ : Π→ [0,∞] :: A 7→ 1.

µ is trivially seen to be countably additive (sigma additive), because no element of Π can be written
as a union of more than one element of Π, namely itself. We also have that σ(Π) = B((0, 1)).

Should µ extend to a measure, we would have that

µ(∅) = µ

(⋂
n∈N

(0,
1

n
)

)
♠
= lim
n→∞

µ((0,
1

n
)) = 1,

where the second last equality (continuity of measure) is true because one of the sets in the inter-
section has finite measure.

But then we have that

1 = µ((0, 1)) = µ(∅ t (0, 1)) = µ(∅) + µ((0, 1)) = 1 + 1 = 2,

a contradiction.

Note: Coming back to ♠, here is a counter-example when the considered sets An satisfy µ(An) =
∞ for all n and An+1 ⊆ An. Take the Lebesgue measure on R, then

µ

(⋂
n∈N

(n,∞)

)
= µ(∅) = 0,

but µ((n,∞)) =∞ for all n and of course limn→∞ µ((n,∞)) =∞.

3.6 Ex 3.6 - Challenge

No solution provided. Your solutions are welcome!

3.7 Ex 3.7 - Challenge

No solution provided. Your solutions are welcome!
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4 Solutions - Sheet 4

4.1 Ex 4.1

• FX(x) = P(X ≤ x). If a ≤ b then {X ≤ a} ⊆ {X ≤ b}. Taking probabilities on both sides
reads FX(a) ≤ FX(b).

• Suppose à sequence (an)n∈N ↓ a, then {X ≤ a} =
⋂
n∈N{X ≤ an}, so FX(a) = P(−) =

limn→∞ P(X ≤ an) = limn→N FX(an).

4.2 Ex 4.2

For part (a), we simply unfold the definitions and use independence:

FY (x) = P(Y ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x)

= P({X1 ≤ x} ∩ · · · ∩ {Xn ≤ x})
= P(X1 ≤ x) . . .P(Xn ≤ x)

= FX1(x) . . . FXn(x).

For (b), we first see that P(min(X1, . . . , Xn) > a) = P(X1 > a, . . . ,Xn > a) = Πn
k=1P(Xk > a) ♠,

using independence.

• If a > 0 we have that♠ = Πn
k=1 exp(−λka) = exp(−(λ1 + · · ·+ λk)a). So P(min(X1, . . . , Xn) ≤

a) = 1− exp(−(λ1 + · · ·+ λk)a).

• If a ≤ 0 then ♠ = Πn
k=11 = 1, whence P(min(X1, . . . , Xn) ≤ a) = 0.

We thus conclude that Fmin(X1,...,Xn)(x) has the cumulative distribution function of an exponential
of parameters λ1 + · · ·+ λk.

Remark: the cumulative distribution function on R characterizes the law of the random variable.
Indeed, it assigns probabilities to (a, b] = FX(b)−FX(a), and we saw that σ{(a, b] | a < b} = B(R).

4.3 Ex 4.3

We have seen in the lecture that πi : {0, 1}N → {0, 1} :: ω = (ω1, . . . , ωn) 7→ ωi is measurable, has
uniform law on {0, 1} and that {πi}i∈N for a countable set of i.i.d random variables. We also saw
that X : {0, 1}N → [0, 1] :: ω = (ω1, . . . , ωn) 7→

∑∞
n=1 ωn2−n has a uniform law on [0, 1]♠. Finally,

we have seen that for F a cumulative distribution function, defining G(t) = inf({x : F (x) ≥ t})
and using U ∼ Uniform([0, 1]), the random variable G(U) then has F as a c.d.f.

We basically have all the ingredients, except that we would need to have a countable copy of r.v.
distributed as F . One way of proceeding would be to do a new countable product of measure spaces
with a product measure (I have not thought about feasibility, but it’s one approach). Another
approach is to just work on the space we are given, namely {0, 1}N. We partition (actually just
countable disjoint subsets are needed) N into a countable disjoint union of sets. For example we
could play with the primes:

• I2 = {2i | i ≥ 1}

• I3 = {3i | i ≥ 1}

• I5 = {5i | i ≥ 1} and so forth . . .

13



For each of these sets, and since all of the πi with i ∈ Ik are i.i.d, we repeat the uniform image law
construction above ♠ and compose with G. We are intuitively done, but still need the following
to conclude:

Independent Grouping Theorem
Let (ωi)i∈I be independent sigma algebras indexed by any set I. Let (Ij)j∈J be a partition of I,
i.e. I = tj∈JIj . Then {σ({∪σi, i ∈ Ij}) | j ∈ J} form a set of independent sigma algebras indexed
by J .

4.4 Ex 4.4

We recall that

lim sup
n→N

An =

∞⋂
n=1

( ∞⋃
k=n

Ak

)
= {ω | ∃ an infinity of n with ω ∈ An}

and

lim inf
n→N

An =

∞⋃
n=1

( ∞⋂
k=n

Ak

)
= {ω | ∃ n with ω ∈ Ak for all k ≥ n}.

It’s sufficient to show that 1− P(lim supn→N An) = 0.

We calculate:

1− P(lim sup
n→∞

An) = P((lim sup
n→∞

An)c)

= P(lim inf
n→∞

Ack)

= lim
n→∞

P(∩∞k=nA
c
k)

= lim
n→∞

( lim
N→∞

P(∩Nk=nA
c
k))

♠
= lim
n→∞

( lim
N→∞

ΠN
k=nP(Ack))

= lim
n→∞

( lim
N→∞

Π∞k=n1− P(Ak))

♦
≤ lim
n→∞

Π∞k=n exp(−P(Ak))

= 0.

We have used independence for♠, and the fact that (by convexity of the exponential) 1+x ≤ exp(x)
for all x ∈ R in ♦ (and taking x = −P(Ak). The final equality just comes from the fact that for
fixed k, the expression after the limit is always zero.

4.5 Ex 4.5

We somehow want to use one of the Borel-Cantelli lemmas. The output resulting in a probability
of 1 (the monkey will end up typing...) we have a strong hint at Borel-Cantelli 2.

Note: in probability, an assertion is considered almost surely.

So let’s fabricate events that have positive probability, sum up to an infinite sum of probabilities
(a strong hint that we can take events with the same probability, finding a pattern) and are inde-
pendent.
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Here is an example of solution (there are plenty...).

All piano notes have equal probability p of being hit (α keys, αp = 1). P({Xn = k}) = p
for 1 ≤ k ≤ α and Xn the random key struck at time n. We have that (Xn)n∈N are i.i.d.
The little prince has a finite length β of notes (a1, a2, . . . , aβ) with ai ∈ {1, . . . , d} for all i. So
P ((Xn, Xn+1, . . . , Xn+α−1) = (a1, . . . , aβ)) = pβ > 0.

Consider the independent events Ak = {(Xkβ , . . . , Xkβ+(β−1)) = (a1, . . . , aβ)} for k ∈ N, with

P(Ak) = pβ > 0. Whence
∑
k≥0 P(Ak)

=∞, so by Borel-Cantelli 2, we have that P(lim supn→∞An) = 1. But we simply recall that

lim sup
n→∞

An = {∩∞n=1 ∪∞k=n An} = {ω | ω ∈ An for infinitely many n},

whence the partition is played (countably) infinitely many times on our slicing up of time into
“intervals” of length β.

4.6 Ex 4.6

The underlying topic spanning the present exercise is the notion of a complete probability
space (or measure space, for that matter). A probability space (Ω,F ,P) is complete if the re-
lation A ∈ F ,P(A) = 0, B ⊆ A implies that B ∈ F . Fundamentally, a random variable on a
complete metric space that is modified on a (measurable) set of measure zero is still measurable.
Here, we skillfully manage not to touch the topic, but you should know this is where you should
look if you encounter such problems in the future.

First, suppose we have two random variables U and V . Then {U 6= V } is measurable. Indeed,

{U 6= V } =
⋃
q∈Q

(({U < q} ∩ {V > q}) ∪ ({U > q} ∩ {V < q}))♠

is measurable!

For point (a), we now treat scalar multiplication (addition of a constant could be seen as a special
case of addition of random variables) Let X ∼ Y (i.e. X = Y in L0, equivalently P(X = Y ) = 1.
Then P(aX + b = aY + b) = P(X = Y ) for all a (even a = 0) and b. Whence aX + b ∼ aY + b.

Now suppose X ∼ Y and Z ∼ W . We want to show that X + Z ∼ Y + W , showing that the
equivalence class of the sum is well-defined. Indeed

{X + Y 6= Y +W} ⊆ {X 6= Y } ∪ {Z 6= W},

so taking probabilities on each side, we get P(−) ≤ P(−) + P(−) = 0.

Now to point (b). Suppose Xn → X a.s. Then X is not necessarily measurable. However, we
show there is an X̃ measurable such that Xn → X̃ a.s.
Denote by A := {ω | limn→∞ exists in R∪{−∞,∞}} is measurable. Indeed A = {ω | lim supXn =
lim inf Xn}. Indeed both random variables on the l.h.s and r.h.s are measurable (Serie 1) and A is
then the complement of a set of the form ♠.
Setting X̃ = (limXn)·1A+0·1Ac , we have a measurable function for which Xn → X̃ almost surely.
Of course, if the original function X is measurable, then X ∼ X̃, as they will differ on a (mea-
surable) set of measure zero. This is easily seen by noticing that these two random variables are
equal except on the complement of the union of two sets of measure zero (unicity of the limit in L0)

I am not so happy with the formulation of the last assertion, in the following sense: we really
just want to see that this modified series X ′n converges almost surely to the same element of L0,
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allowing us to now talk of convergence in the space of equivalence classes L0. This however should
be clear because the measurable set

B = {lim inf X ′n = lim supX ′n} ∩ {lim inf Xn = lim supXn}

has measure one. Indeed

{lim inf X ′n = lim supX ′n} ⊇ {lim supXn = lim inf Xn}\

(⋃
n∈N

{Xn 6= X ′n}

)
,

the right hand side having measure one (and symmetrically). So we’re indeed talking about the
same element of L0.

4.7 Ex 4.7

• If X ∼ Y then P({|X − Y | > ε}) = 0 for all ε, so dKF (X,Y ) = 0.

• Conversely, suppose that dKF (X,Y ) = 0 and X � Y . Then

{X 6= Y } =

(⋂
n∈N

{
|X − Y | < 1

n

})c
=
⋃
n∈N

{
|X − Y | > 1

n

}
,

so

0 < P({X 6= Y }) = lim
n→∞

↑ P

({
|X − Y | > 1

n

})
.

Then ∃ n0, ε such that for all n ≥ n0 : P
({
|X − Y | > 1

n

})
> ε > 0. Taking 1

n < ε, we get
for 0 < x ≤ 1

n that P ({|X − Y | > x}) > ε > 0. Whence dKF (X,Y ) > 0. A contradiction.
Thus X � Y .

• We will have to prove that d(X,Y ) does not depend on the representants X and Y in the
equivalence classes of L0. First we prove symmetry and the triangle inequality on random
variables, then show the distance function is well-defined on equivalent classes.

• For X and Y random variables, dKF (X,Y ) = dKF (Y,X) is immediate.

• For X,Y, Z (R-valued) random variables, we have |X − Y | < |X − Z|+ |Z −X| so

P({|X − Y | > ε1 + ε2}) ≤ P({|X − Z| > ε1} ∪ {|Y − Z| > ε2})
≤ P({|X − Z| > ε1}) + P({|Y − Z| > ε2}).

If the first element after the last inequality is < ε1 and the second < ε2, then P({|X − Y | >
ε1 + ε2}) < ε1 + ε2. In other words, by taking infimums, we read dKF (X,Y ) ≤ dKF (X,Z) ≤
dKF (Z, Y ).

• We now have all elements in our hands to show that dKF is well defined on L0, thus concluding
our proof that the Ky Fan metric is indeed a metric on L0. Indeed, taking X ∼ X̃ and Y ∼ Ỹ ,
we compute a classical triangular + inverse triangular argument.

|d(X,Y )− d(X̃, Ỹ )| ≤ |d(X,Y )− d(X, Ỹ )|+ |d(X, Ỹ )− d(X̃, Ỹ )|
≤ d(Y, Ỹ ) + d(X, X̃)

= 0.

4.8 Ex 4.8 - Challenge

No solution provided. Your solutions are welcome!
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5 Solutions - Sheet 5

5.1 Ex 5.1

We shall use the following:

Theorem. Let Xn and X be random variables. Then Xn
P→ X if and only if for every subsequence

Xnk of Xn there is a further subsequence Xnkl
such that Xnkl

a.s.→ X.

It will be used several times in the sequel.

• We consider (Xn + Yn)n≥0. Take any subsequence nk. Then ∃ nkl such that Xnkl
→ X a.s.

From this subsequence one can extract a further sequence nklm such that Ynklm
→ Y a.s.

But then Xnklm
→ X a.s. as well. Hence (X + Y )nklm

→ X + Y a.s. We conclude that

Xn + Yn
P→ X + Y .

• The exact same argument gives us that XnYn
P→ XY .

• We also need Y 6= 0 a.s. We again use the same argument.

• The same argument is used again. Here, the continuity of g guarantees that the subsequences
(and subsubsequences) of (g(Xnk)k≥0 still converge almost surely to g(X).

5.2 Ex 5.2

Consider (Ω,F ,P) = ([0, 1],B([0, 1]), λ) with λ the Lebesgue measure.

Define a sequence of indicator functions in the following way:

• X1 = 1[0,1],

• X2 = 1[0, 12 ], X3 = 1[ 12 ,1],

• X4 = 1[0, 13 ], X5 = 1[ 13 ,
2
3 ], X6 = 1[ 23 ,1],

• . . .

• X (n−1)n
2 +1

= 1[0, 1n ], . . . , Xn(n+1)
2

= 1[1− 1
n ,1],

• . . .

Each random variable Y on the nth line satisfies P(|Y − 0| > ε) = 1
n for any ε < 1. But then

Xn
P→ 0[0,1]. We have Xn 6→ 0[0,1] almost surely. However (one know that every sequence converges

in probability has a subsequence converging almost surely to the same random variable) we have,
extracting the first random variable of each line that:(

X (k−1)k
2 +1

)
k≥1
→ 0[0,1], a.s.

5.3 Ex 5.3

Notice that Z ∈ S =⇒ Z1A ∈ S for any A in F . Z ∈ S =⇒ |Z| ∈ S and so |Z|1{|Z|>ε} ∈ S.

Now from
|Z| ≥ |Z|1{|Z|>ε} ≥ ε1{|Z|>ε}

we deduce that E[|Z|] ≥ εE[1{|Z|>ε}]. This can be read as P({|Z| > ε}) ≤ 1
εE[|Z|].
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Note: the last relation is called Markov’s inequality and is true for any Z ∈ L1.

Let’s suppose εn ↓ dKF (X,Y ) := inf{ε > 0 | P(|X − Y | > ε) ≤ ε}. Suppose
√

E[|X − Y |] ≤ ε0 for
some ε0. Then

P({|X − Y | > ε0}) ≤
1

ε0
E[|X − Y |] =

1

ε0
ε20 ≤ ε0,

whence dKF (X,Y ) ≤ ε0.

We conclude by taking εn ↓
√

E[|X − Y |].

5.4 Ex 5.4

X =
∑n
k=1 1{k}. But P({k}) = 1

n for all k ∈ {1, · · · , n} and since X is a simple random variable
(a step function, if you prefer), we have by definition that E[X] =

∑n
k=1X(k).

5.5 Ex 5.5

A few words before tackling this exercise. It certainly was very confusing to me, just to put you
at ease. There are several concepts that might puzzle you.

First of all, you know the definition of V = (L1, || · ||1) from measure theory. You know that
this vector space is a Banach space and that S, the set of all step functions, is dense in V . You
also know (obviously) that L1  L0 (at least for most probability spaces: think of Ω with finite
cardinality as a counter-example).

You also know from functional analysis that two completions of a normed vector space are isomor-
phic.

Here, we are doing something different. You are now asked to forget about the measure-theoretic
definition of L1, and only remember ||L1|| as a norm on S. The present exercise is meant to show
that IF S, can be completed in (L0, dKF ) (a subset of which is then a normed vector space) by
means of a continuous injection into the metric space (L0, dKF ) , then this completion is unique.
The course shows this can be done. Your knowledge from measure theory (the construction of the
Lebesgue integral) shows that our construction coincides with what you have learnt in measure
theory, because convergence in L1 in the usual sense implies convergence in probability (and thus
S is indeed continuously injected into L0 endowed with the Ky-Fan metric.

Suppose now that S ⊆ L1, L̃ ⊆ L0, with (L1, || · ||) and (L̃, || · ||L̃) completions (as normed spaces)
of (S, || · ||L1) in L0. Notice we are slightly sloppy, as S is injected continuously into L0 by two
isometries i1 : S → L1 and i2 : S → L̃. It might also confuse you that L1 is used as a norm on S
as well as on its image by i1, but all shall be clear from the context.

Claim: L1 = L̃ and || · ||L1 = || · ||L̃.

Proof. Take X ∈ L̃. Then, since L̃ is a completion of S, there is a sequence Xn → X in L̃ (i.e.
||Xn−X||L̃)→ 0). Teh sequence Xn is then also Cauchy in L1 since ||Xn−Xm||L1 = ||Xn−Xm||L̃,
so it converges in L1 to some X ′ ∈ L0. But since the identity maps are continuous, Xn → X in
probability and Xn → X ′ in probability as well (the Ky Fan metric models convergence in proba-
bility!). Hence X = X ′. So L̃ ⊆ L1. Symmetrically, this argument yields L1 ⊆ L̃. We have shown
that L1 = L̃.

The second claim follows immediately from continuity of norms:

||X ′||L1 = lim
n→∞

E[|Xn|] = ||X ′||L̃,
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where Xn
L1

→ X ⇐⇒ Xn
L̃→ X.

5.6 Ex 5.6 - Challenge

No solution provided. Your solutions are welcome!
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6 Solutions - Sheet 6

6.1 Ex 6.1

First note that
∑
n≥1 Cn

−1−ε < ∞, since 1 + ε > 1. X =
∑∞
n=1 n1X=n, so by monotone conver-

gence

E[X] = lim
k→∞

E[

k∑
n=1

n1{X=n}]

=

∞∑
n=1

nP({X = n})

=

∞∑
n=1

n∑
i=1

P({X = n})

=

∞∑
i=1

∞∑
n=i

P({X = n})

=
∑
i≥1

P({X ≥ i})

6.2 Ex 6.2

We recall that the Ky Fan metric models convergence in probability, i.e.

dKF (Xn, Y )→ 0 ⇐⇒ Xn
P→ Y.

Thus what we have to prove is that our present metric models convergence in probability.

Claim 1: dL0(X,Y ) := E[|X − Y | ∧ 1] is a metric.

Proof. Symmetry is immediate. Obviously, dL0(X,Y ) ≥ 0. Then dL0(X,Y ) = 0 ⇐⇒ |X−Y |∧1 =
0 a.s. ⇐⇒ |X − Y | = 0 a.s., which proves we are not considering a pseudometric.

Now to the triangle inequality. We have that

dL0(X,Y ) := E[|X − Z + Z − Y | ∧ 1]

≤ E[|X − Z| ∧ 1 + |Z − Y | ∧ 1]

= dL0(X,Z) + dL0(Z, Y ),

where in the first inequality we have used that |(X−Z) + (Z−Y )| ∧ 1 ≤ (|X−Z|+ |Z−Y |)∧ 1 ≤
|X − Z| ∧ 1 + |Z − Y | ∧ 1.

Claim 2: E[|Xn −X| ∧ 1] →
n→∞

0 ⇐⇒ Xn
P→ X.

Proof. “ ⇒ ”. If ε ∈ (0, 1], we have that ε · P({|Xn − X| > ε}) ≤ E[|Xn − X| ∧ 1] →
n→∞

0. So

P({|Xn −X| > ε} →
n→∞

0 if ε ∈ (0, 1] (and a posteriori for all ε).

“ ⇐ ”. E[|Xn −X| ∧ 1] ≤ E[(|Xn −X| ∧ 1) · 1{|Xn−X|≤ε}] + E[|Xn −X| ∧ 1) · 1{|Xn−X|>ε}]. The
first term is smaller than ε, the second smaller or equal to P({|Xn −X| < ε}), which goes to zero
as n goes to infinity. We are done.
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6.3 Ex 6.3

For part (a), recall that a singleton X ∈ L1 is uniformly integrable. So

t · P({|X| > t}) = t · E[1{|X|>t}]

≤ E[|X|1{|X|>t}]
t→∞−→ 0,

using uniform integrability for the limit.

In exercise (b), we suppose w.l.o.g. that X ≥ 0 and calculate:

E[X] ≤ E

 ∞∑
j=1

j · 1{X∈[j−1,j)}


= lim
N→∞

N∑
j=1

j · (P({X < j})− P({X < j − 1}))

= lim
N→∞

 N∑
j=1

j · P({X < j})−
N−1∑
j=0

(j + 1) · P({X < j})


= lim
N→∞

N · P({X < N})−
N−1∑
j=0

P({X < j})


= lim
N→∞

N −N · P({X ≥ N}) +

N−1∑
j=0

P({X ≥ j})−N


≤ lim
N→∞

N−1∑
j=0

c · j−1−ε

<∞,

where for the second last inequality we introduced c = supt≥0 t
1+ε · P({X > t}) and the fact that

by hypothesis, N · P({X ≥ N}) →
N→∞

0.

For point (c), we shall use the “Cauchy condensation test”: let an ↓ 0, then∑
an <∞ ⇐⇒

∑
2na2n <∞.

Take P({|X| = k}) = c
k2 log(k) (where c is just scaled so that P is a probability and ≥ 1).

E[X] =
∑
k≥1

c
k log(k) , but by Cauchy’s condensation criterion, we have that

∑
n≥1

2nc
2n log 2n ∼∑

n≥1
1
n =∞. So E[X] =∞.

However, P({X ≥ k}) =
∑∞
j=k P({X = j}) =

∑∞
j=k

c
j2 log(j) ≤

∑∞
j=k

c
j2 log(k) . By using that∫

1
x2 = − 1

x and playing smartly with Riemann sums, we bound the last term in our calculation by
c̃

k log(k) for some constant c̃, whence k · P({X ≥ k}) ≤ c̃
k log(k) −→k→∞ 0 .
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6.4 Ex 6.4

Let (Xi)i∈I a family of bounded random variables in L1 (i.e. supi∈I ||Xi|| < ∞). We must show
the following two assertions (known as uniform integrability) are equivalent (note the second point
assertion implies L1-boundedness):

1. ∀ ε > 0 ∃ δ > 0 : A ∈ F , P(A) > 0 ⇒ ∀ i ∈ I, E[|Xi|1A] < ε

2. lima→∞ supi∈I E[|Xi|1|Xi>a|] = 0.

2⇒ 1 : Let ε > 0. Choose a > 0 large enough so that

sup
i∈I

E[1{|Xi|>a}] <
ε

2
.

Then for all i ∈ I and A ∈ F we have:

E[|Xi|1A] ≤ E[|Xi|1A∩{|Xi|≤a}] + E[|Xi|1{|Xi|>a}]

≤ aP(A) +
ε

2
.

By choosing δ = ε
2a , we are done.

1⇒ 2 : Let c = supi∈I E[|Xi|]. By Markov’s inequality, for any a > 0, we have

∀ i ∈ I : P({|Xi| > a}) ≤ c

a
.

Let ε > 0 and choose δ > 0 such that the left hand side of (1) is verified. Then if a is large enough
so that c

a < δ we get:
∀ i ∈ I : E[|Xi|1{|Xi|>a}] < ε,

so we are done!

6.5 Ex 6.5

A proof can be found in [1], namely this is the content of Theorem 4.6.3. In the proof of the
theorem, a few references are made to other results, which are all referenced in the book (even
though one result is left as an exercise). You might wish to skip this exercise on a first reading
and come back to it later, or at least after having solved the other exercises of the exercise sheet.

6.6 Ex 6.6

Note that if supi∈I ||Xi||Lp <∞ for p > 1, then we satisfy the assumptions of this theorem (from
(b) to (a)). We will prove that (b) implies (a) under weaker conditions on φ: we drop convexity
but retain all other conditions. We use the characterization of uniform integrability from 6.4.

First: for all ε > 0 there is an xε such that x ≥ xε ⇒ x ≤ εφ(x). Hence, by denoting M :=
supi∈I E[ϕ(|Xi|)] <∞:

sup
i∈I

E[|Xi|1{|Xi|≥xε}] ≤ ε sup
i∈I

E[ϕ(|Xi|)1{|Xi|≥xε}]

≤ ε sup
i∈I

E[ϕ(|Xi|)] = εM.

Whence lima→∞ E[|Xi|1{|Xi|>a}] = 0. That is, {Xi}i∈I are u.i.
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7 Solutions - Sheet 7

7.1 Ex 7.1

We just show that λ IS the Lebesgue measure (denoted here by µ). Then in particular λ([a, b]) =
µ([a, b]) for −∞ < a, b <∞.

Proof. Let A ∈ B(R), then

λ(A) =
∑
n∈Z

λn(A ∩ [n, n+ 1])

=
∑
n∈Z

µ(A ∩ [n, n+ 1])

=
∑
n∈Z

µ(A ∩ [n, n+ 1))

= µ(A),

since
⊔
n∈Z[n, n+ 1) = R.

7.2 Ex 7.2

See also Section 14 for an alternative solution.

Suppose first that two finite measures µ and ν of equal mass on a space (Ω,G) coincide on a
pi-system Π ⊆ G.

Claim: µ = ν on σ(Π).

Proof. We prove that G′ = {C ∈ G | µ(C) = ν(C)} is a sigma-algebra.

• µ(∅) = 0 = ν(∅), so ∅ ∈ G′.

• If C ∈ G′ then µ(Cc) = µ(Ω)− µ(C) = ν(Ω)− ν(C) = ν(Cc).

• Suppose (Ci)i∈N ∈ GN and µ(Ci) = ν(Ci) for all i and the Ci be disjoint. Then µ(tn∈NCi) =∑
i∈N µ(Ci) =

∑
i∈N ν(Ci) = ν(tn∈NCi). So ti∈NCi ∈ G′.

G′ is thus a sigma-algebra.

Now back to our exercise. Notice that for all n, An ∩ Π is a pi-system on An and An ∩ Π ⊆ Π.
Furthermore we know that µ(An) = ν(An) for all n as well. We use the following fact (exercise for
you: prove it):

σ|A(A ∩Π) = A ∩ σ(Π).

In words: “the sigma-algebra of the trace is the trace of the sigma-algebra”.

Let’s suppose σ(Π) = G. Then σ|A(Ai ∩ Π) = A ∩ σ(Π) = A ∩ G. We recall that Ai ∩ Π is a
pi-system on Ai. So from the claim above: µ|Ai∩G = ν|Ai∩G for each i ∈ N.

We’re in a position to conclude. We suppose w.l.o.g. (see below for an explanation) that Ai ⊆ Ai+1

for all i. Taking B ∈ G,

µ(B) = µ
(
∪i∈N (B ∩Ai)

)
= lim
n→∞

µ(B ∩Ai)

= lim
n→∞

ν(B ∩Ai)

= ν(B).
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The “without loss of generality” assumption remains to be seen. Again without loss of generality
(why?), this boils down to showing that if Ai and Aj are two elements of the sequence that covers
T , then µ and ν coincide on G|Ai∪Aj . Taking E ∈ G we thus have that µ(E ∩Ai) = ν(E ∩Ai) and
µ(E ∩Aj) = ν(E ∩Aj). We wish to prove that

µ(E ∩ (Ai ∪Aj)) = ν(E ∩ (Ai ∪Aj)).

We write Ai ∪Aj = A
′

i tD tA
′

j , where D = Ai ∩Aj , A
′

i = A1\D and A
′

j = Aj\D. We unfold the
definitions to conclude:

µ(E ∩ (Ai ∪Aj)) = µ((E ∩A
′

i) ∪ (E ∩D) ∪ (E ∩A
′

j))

= µ(E ∩A
′

i) + µ(E ∩D) + µ(E ∩A
′

j)

= µ(E ∩A
′

i ∩Ai) + µ(E ∩D ∩Ai) + µ(E ∩A
′

j ∩Aj)

= ν(E ∩A
′

i ∩Ai) + ν(E ∩D ∩Ai) + ν(E ∩A
′

j ∩Aj)

= ν(E ∩A
′

i) + ν(E ∩D) + ν(E ∩A
′

j)

= ν((E ∩A
′

i) ∪ (E ∩D) ∪ (E ∩A
′

j))

= ν(E ∩ (Ai ∪Aj)).

Note that the last step (w.l.o.g.) does not constitute the real heart of the argument, but rather a
baroque variation. The important concept is really about working locally and going to the limit
(the whole space).

7.3 Ex 7.3

Solution 1: measure-theoretic spirit

By scaling we may assume that a = 0 and b = 1 so we are working on the probability space
([0, 1],B([0, 1]), dx), where B is the Borel σ-algebra and dx denotes the Lebesgue measure. Define
the simple functions

gn(x) =

n−1∑
k=0

n

(
f

(
k + 1

n

)
− f

(
k

n

))
1[

k
n ,
k+1
n

)(x)

which are constant on every interval of the form Ik =
[
k
n ,

k+1
n

)
. Notice first that we have the

telescoping sum∫ 1

0

gn(x) dx =
n−1∑
k=0

n

(
f

(
k + 1

n

)
− f

(
k

n

))
· 1

n
=

n−1∑
k=0

(
f

(
k + 1

n

)
− f

(
k

n

))
= f(1)− f(0).

Notice then that when x ∈ Ik, then by the mean value theorem

gn(x) = f ′(ξ)

for some ξ ∈ Ik. In particular |x− ξ| ≤ 1
n and we have

|gn(x)− f ′(x)| = |f ′(ξ)− f ′(x)| ≤ ω(|ξ − x|) ≤ ω(1/n)

where ω is the modulus of continuity (see Prop. A.7. in the lecture notes if needed) of the uniformly
continuous function f ′ (a continuous function on a compact interval is uniformly continuous).
Notice that the right hand side in the inequality does not depend on the interval Ik, and thus
in fact we see that gn → f ′ in L∞([0, 1]). As L∞ is continuously embedded in L1, we also have
gn → f ′ in L1([0, 1]) and in particular∫

f ′(x) dx = lim
n→∞

∫
gn(x) dx = f(1)− f(0).
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Solution 2: Riemann sums spirit

Recall that a continuous function f (here f ′) is Riemann integrable. Split the interval [a, b] into
intervals of length b−a

n , write a telescopic sum and use the mean value theorem:

f(b)− f(a) =

n−1∑
k=0

(
f

(
a+ (b− a)

k + 1

n

)
− f

(
a+ (b− a)

k

n

))

=

n−1∑
k=0

b− a
n

f ′(xkn),

with xkn ∈
(
a+ (b− a) kn , a+ (b− a)k+1

n

)
.

The last term can be identified as a Riemann sum. As n goes to infinity, it thus converges to∫ b
a
f ′(x) dx, f ′ being continuous.

7.4 Ex 7.4

Let f : R → R be convex. We set out to prove Jensen’s inequality. We claim that for s < t < u
the relation

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
holds. Here is a graphical proof, where m1 < m2 < m3 translates instantaneously into our desired
relation. s, t and u are of course the x-coordinates of the three intersection points of the three lines.

As a consequence, fixing a point x, the following limits

Rx = lim
h→0+

f(x+ h)− f(x)

h

and

Lx = lim
h→0−

f(x− h)− f(x)

h

exist, where R and L stand for left and right. Of course, Lx ≤ Rx and

Lx = Rx ⇐⇒ f differentiable at x.
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As a consequence, we immediately have continuity of f (these reasonings lead to deduce interesting
properties of differentiability for convex functions... think about playing around with reasonings
such as “how many points of non-differentiability are there”... similar reasonings as those applied
to the cumulative distribution function for instance).

Now consider the line of slope m ∈ [Lx, Rx] at the point (x0, ϕ(x0) on the graph of ϕ. Then
ϕ(x) ≥ ax+ b for all x in R.

We have ϕ(X) ≥ aX+ b. Suppose X ∈ L1. Consider the line above at the point (E[X], aE[X] + b),
noting that aE[X] + b = ϕ(E[X]). Then E[ϕ(X)] ≥ aE[X] + b = ϕ(E[X]) .

Now to the last part of the exercise. Suppose E[X+] <∞ and E[X−] <∞. The case E[X+] = −∞
and E[X−] <∞ is treated similarly. 3 cases have to be analyzed:

ϕ(∞) =


+∞
0

−∞.

• Suppose ϕ(∞) = ∞. ϕ(E[X]) = ϕ(∞) = ∞
?
≤ E[ϕ(X)]. But then there is an a > 0 and a b

such that ϕ(X) ≥ aX + b. So E[ϕ(X)] ≥ E[aX + b] =∞. OK.

• Suppose ϕ(∞) = c ∈ R. Then c = ϕ(E[X])
?
≤ E[ϕ(X)]. But then there is a line y = c such

that ϕ(x) ≥ c, whence ϕ(X) ≥ 0 and so E[ϕ(X)] ≥ c. OK.

• Suppose ϕ(∞) = −∞. But then there is nothing to prove (−∞ < anything), except that
E[ϕ(X)] is well defined. We leave these details for the interested reader to solve.

7.5 Ex 7.5

See also Section 14 for an alternative solution. Grateful thanks to Wei Jiaye for reviewing and
typing my solution.

I’ll prove a slightly more general statement: let f : (X,µ) → Rn, where f = (fi), for i = 1, . . . , n
and fi ∈ L1(µ) for all i = 1, . . . , n. By definition,∫

fdµ :=

(∫
X

fidµ

)n
i=1

∈ Rn.

Theorem. f 7→ ‖f‖ is measurable and∥∥∥∥∫
X

fdµ

∥∥∥∥ ≤ ∫
X

‖f‖dµ.

Proof. Every norm of Rn is continuous, thus ‖·‖ is measurable, so ‖f‖ is measurable. Let s : X →
Rn be a (multi-dimensional) step function defined as

s =

N∑
i=1

si1Ai , si ∈ Rn, Ai ⊂ X disjoint, measurable sets for 1 ≤ i ≤ N.

Then we have∥∥∥∥∫
X

sdµ

∥∥∥∥ =

∥∥∥∥∥
N∑
i=1

siµ(Ai)

∥∥∥∥∥ ≤
N∑
i=1

‖si‖µ(Ai) =

∫
X

N∑
i=1

‖si‖1Aidµ =

∫
X

‖s‖dµ,

taking into consideration that siµ(Ai) ∈ Rn.
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Since all norms in Rn are equivalent(they always are on finite-dimensional vector spaces), there
exists C ∈ (0,∞) such that ‖v‖ ≤ C max1≤i≤n |vi|,∀v ∈ Rn. Let’s choose ε > 0, for s : X → Rn

with

max
1≤i≤n

∫
X

|(f − s)i|dµ ≤
ε

2C
,

hence ∥∥∥∥∫
X

(f − s)dµ
∥∥∥∥ ≤ C max

1≤i≤n

∣∣∣∣∫
X

(f − s)idµ
∣∣∣∣ ≤ ε

2

and ∫
X

‖f − s‖dµ ≤ C max
1≤i≤n

∫
X

|(f − s)i|dµ ≤
ε

2
.

Whence for all ε > 0, ∥∥∥∥∫
X

fdµ

∥∥∥∥ ≤ ∥∥∥∥∫
X

(f − s)dµ
∥∥∥∥+

∥∥∥∥∫
X

sdµ

∥∥∥∥
≤ ε

2
+

∫
X

‖s‖dµ

≤ ε

2
+

∫
X

‖s− f‖dµ+

∫
X

‖f‖dµ

≤ ε+

∫
X

‖f‖dµ.

7.6 Ex 7.6

This exercise/type of reasoning will be important in stochastic calculus in the context of Girsanov’s
theorem, a procedure by which one is able (among other things) to eliminate the drift of certain
random processes.

What is meant here is that Q(A) = E[e
1
2X−

a2

2 1A] for A ∈ F (on a space (Ω,F ,P)).

Let B ∈ B(R), then

Q({X ∈ B}) = E[e
1
2X−

a2

2 1X−1(B)]

=

∫
B

1√
2π
e−

x2

2 e
1
2x−

a2

2 dx

=

∫
B

1√
2π
e

1
2 (x−a)2 dx.

But this corresponds to the distribution of a N (0, 1) random variable. The second equality should
be seen conceptually as a composition of functions, namely

e
1
2X(ω)

1X−1(B)(ω) =
(
x 7→ e

1
2x1B(x)

)
◦
(
ω 7→ X(ω)

)
.

27



8 Solutions - Sheet 8

8.1 Ex 8.1

Note that our problem is symmetric in x and y.

Our strategy (classical proof) is the following:

(a) Prove this is true for f = 1A, with A = A1 ×A2, A1 ∈ G1, A2 ∈ G2.

(b) Prove this is true for f = 1A, with A ∈ G1 ⊗ G2.

(c) Prove this is true for any f that is G1 ⊗ G2-measurable (f : G1 ⊗ G2 → R).

(b) =⇒ (c): Any such f can be written as f = limn→∞ ↑ fn, where the fn are step functions

of the form fn =
∑α(n)
i=1 ai1Ani for Ani ∈ G1 ⊗ G2. But then y 7→ f(x, y) is a pointwise limit of

measurable functions y 7→n (x, y), for n ≥ 1. Thus y 7→ f(x, y) is measurable.

(a) =⇒ (b): Let D = {A ∈ G1 ⊗ G2 | y 7→ 1A(x, y) is measurable}. If we prove that D is is a
λ-system (which contains the π-system of cylinder sets), then by Dynkin’s λ-π theorem, we obtain
that D = G1 ⊗ G2. The (standard) proof goes as follows:

• Ω ∈ D is obvious since 1 7→ 1 is a measurable function,

• Let A ∈ D. 1Ac = 1− 1A(x, y) is measurable in y, so Ac ∈ D,

• Let A1 ⊆ A2 ⊆ . . ., then 1{∪n≥1An}(x, y) =
∑
n≥1 1An(x, y). A pointwise limit of measurable

functions being measurable, we conclude that ∪n≥1An ∈ D.

Proof of (a): y 7→ 1A1⊗A2(x, y) = 1A1(x)1A2(y) is G-measurable for a fixed x, since 1A2(y) is equal
to 1 if y ∈ A2 and to 0 if y /∈ A2.

8.2 Ex 8.2

E[F (X)] =

∫ ∞
0

F (x) PX(dx)

=

∫ ∞
0

∫ x

0

F ′(u) duP(dx)

=

∫ ∞
0

∫ ∞
0

1{u<x} duPX(dx)

=

∫ ∞
0

F ′(u)

∫ ∞
0

1{u<x} PX(dx) du

=

∫ ∞
0

F ′(u) P({X > u}) du,

where in the second equality we used that F (0) = 0 and in the second last Fubini’s theorem on
P⊗ µ (positive version, since F ′(u) ≥ 0).

The two particular cases are immediate.
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8.3 Ex 8.3

Xn : (Ω,F , ν) → R, where ν is σ-finite, n ∈ N. We work on (Ω × N, ν ⊗ µ). Our function is
F : Ω× N→ R :: (ω, n) 7→ Xn(ω).

By Fubini, we have the equivalence∫
Ω×N
|F | ν ⊗ µ < 0 ⇐⇒

∫
N

∫
Ω

|Xn(ω)| ν(dω)dµ <∞.

The right-hand side is nothing but
∑
n∈N E[|Xn|], which by assumption is < ∞. And then, by

Fubini again: ∑
n∈N

=

∫
Ω

∫
n∈N

Xn(ω) dµdν = E

[∑
n∈N

Xn

]
.

8.4 Ex 8.4

For an enlightening counter-example, see 14.

For a technically more involved but much less intuitive counter-example, download the PDF file
called “nofub.pdf” at the following index: https://math.jhu.edu/~jmb/note, an example on
John Michael Boardman’s webpage at John Hopkins University. A “post-mortem” on what actually
happened in this counter-example (an explanation) is offered.

8.5 Ex 8.5

This is the content of Theorems 9.2.1 and Corollary 9.2.3 (pp.108-111) of [4]. The fact I am not
writing the proof here should not lead you to think this is not important. This result and method
of proof are essential in probability theory, so please do tackle this exercise!

8.6 Ex 8.6 - Challenge

No solution provided. Your solutions are welcome!
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9 Solutions - Sheet 9

9.1 Ex 9.1

Possible solution: Let X ∼ U
(
(−1, 1)

)
a uniform random variable and Y := X2.

E[X] = 0; E[Y ] =
∫ 1

−1
u2 1

2 du =
[
u3

6

]1
−1

= 1
3 ; E[XY ] =

∫ 1

−1
u3 1

2 du = 0.

As a consequence σ(X,Y ) = E[XY ]− E[X] · E[Y ] = 0. But X and Y are not independent.

To see this, consider for example

P
(
{X ∈ [0, 0.5), Y ∈ [0, 0.5)}

)
= P

(
{X ∈ [0, 0.5)}

)
= 0.25

and

P
(
{X ∈ [0, 0.5)}

)
· P
(
{Y ∈ [0, 0.5)}

)
=

1

4
· 2√

2
=

1

2
√

2
6= 1

4
.

9.2 Ex 9.2

That independence yields the stated property is immediate. The converse is a usual Dynkin
argument: two probability measures coinciding on a generating system are equal. In this case
the measurable space is Rn together with it’s Borel sigma-algebra. The probability measure on
(Rn,B(Rn)) is the law of (X1, . . . , Xn), in other words the push-forward Q on Rn of the probability
measure P by (X1, . . . , Xn), denoted (X1, . . . , Xn)∗P. The stated property just says that Q is the
product measure on Rn of (X1)∗P, . . . , (Xn)∗P. But by Fubini, this is equivalent to X1, . . . , Xn

being independent.

9.3 Ex 9.3

(a) E[E[X|G]] = E[E[X|G]1Ω] = E[X1Ω] = E[X].

(c) (X ∈ L1). We have that E[X1A] = E[X1A] for all A ∈ G. X being G-measurable, we conclude
that E[X|G] = X by unicity of the conditional expectation.

(e) E[E[X|G]1A] = E[X1A] ≥ 0 for all A ∈ G. Consider B = {ω | E[X|G] < 0}. Then
E
[
E[X|G] 1B

]
= 0, since this quantity is both ≥ 0 and ≤ 0. But then E[X|G] · 1B = 0, a.s.

Whence E[X|G] ≥ 0, a.s.

(f) X − Y ≥ 0 so E[X − Y |G] ≥ 0 by point (e). As a consequence E[X|G] ≥ E[Y |G].

(d) By using that X is independent of G (meaning that σ(X) and G are independent under P), we
have that E[X1A] = E[X] · E[1A] = E[E[X]1A]. As a consequence, E[X|G] = E[X].

(b) Since H ⊂ G,we have (by (c), E[X|G] being G-measurable) that E[E[X|H]|G] = E[X|H]. Now
for A ∈ H, using G-measurability of E[X|G] and that H ⊂ G, we have

E[E[X|G]|1A] = E[X1A] = E[E[X|H]1A].

As a consequence, E[E[X|G]|H] = E[X|H].

(g) We use Jensen’s inequality, which will be proven in exercise 10.1. For ϕ(x) = |x| (convex), we
have

|E[Xn|G]− E[X|G]| = E[(Xn −X) | G]|
Jensen
≤ E[|Xn −X| | G].

Taking expectations and letting n→∞, we get that E[Xn|G]
L1

→ E[X|G].
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9.4 Ex 9.4

I cannot stress how important this small theorem/lemma is to probability theory, with several
applications in this lecture. Let’s call it the Independent Conditioning Theorem. This
theorem comes up periodically in the theory of stochastic analysis, Markov chains or processes,
among others. The proof can be found on page 150 of [4].

9.5 Ex 9.5

Part (a): we first prove the following:

Claim: If F1 and F2 are independent sigma-algebras, and X is an integrable random variable
independent of F2, then the following holds:

E[X|F1 ∨ F2] = E[X|F1].

Phrased in plain words, you could read this statement as “adding an independent sigma-algebra
gives no additional information on the expected value of X”. Example zero of this property is
when F1 = {∅,Ω}, in which case this reads E[X|F2] = E[X].

In our present exercise we have

σ(Sn, Sn+1, . . .) = σ(Sn, Xn+1, Xn+2, . . .) = σ(Sn, σ(Xn+1, Xn1
, . . .))

using the fact that Xn+k = Sn+k − Sn+k−1. Sn and σ(Xn+1, Xn+2, . . .) are independent, and Xn

is independent of σ(Xn+1, . . .), so the above-stated claim proves point (a).

Proof. Let A ∈ F1, B ∈ F2, then X1A and 1B are independent, whence

E[X1A1B ] = E[X1A]E[1B ]

= E[E[X|F1]1A]E[1B ]

= E[E[X|F1]1A1B ].

We want to go from 1A∩B , with A ∈ F1, B ∈ F2 to 1C with C ∈ F1 ∨F2. We use Dynkin’s Π−Λ
Theorem. Define Π := {A ∩ B | A ∈ F1, B ∈ F2}. Then Π is a Π-system that generates F1 ∨ F2

(take A = Ω or B = Ω, alternatively). We now claim that

Λ :=
{
C ∈ F1 ∨ F2 | E[X 1C ] 1C ] = E[E[X|F1] 1C ]

}
is a Λ-system, which would complete our proof. We thus set out to prove this claim:

• Ω ∈ Λ is clear: take A = B = Ω

• (A∩B)c = (Ac ∩Bc)t (Ac ∩B)t (A∩Bc). Whence by linearity of the expectation we have
that (A ∩B)c ∈ Λ.

• If (Ai ∩ Bi)i∈N are disjoint, Ai ∩ Bi ∈ Λ, then by dominated convergence we have that
ti∈N(Ai ∩Bi) ∈ Λ.

We are done!
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Part (b): Let A ∈ σ(Sn), then let B ∈ B(Rn) such that A = (X1 + . . .+Xn)−1(B). We have that

E[Xi1A] =

∫
1B(X1 + . . .+Xn) ·Xi dP

=

∫
1B(x1 + . . .+ xn) · xi dP

=

∫
1B(x1 + . . .+ xn) · xi d(X∗P)

⊗
n,

which is constant in i by Fubini! Whence we have E[Xi1A] = E[Snn 1A] for all i, Sn
n is σ(Sn)-

measurable, so E[Xi|Sn] = Sn
n .
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10 Solutions - Sheet 10

10.1 Ex 10.1

The present proofs for Jensen’s and Hölder’s inequalities are based on Jason Swanson’s notes, found
at http://math.swansonsite.com/, under the tab “Other documents”, “Conditional expectation
for professionals”. Other interesting lecture notes/documents are also available.

We recall, for Jensen’s inequality, that both X and ϕ(X) have to be integrable. Furthermore, for
ϕ : R→ R a convex function, the left-hand derivative

ϕ
′

−(c) = lim
h↓0

ϕ(c)− ϕ(c− h)

h

exists for all c and
ϕ(x)− ϕ(c)− (x− c)ϕ

′

−(c) ≥ 0,

for all x and c.

Proof. (of Jensen’s inequality). Let Z = (X−E[X|G])ϕ
′

−(E[X|G]), so that ϕ(X)−ϕ(E[X|G])−Z ≥
0, a.s. This implies

0 ≤ E
[
(ϕ(X)− ϕ(E[X|G])− Z)|G

]
= E[ϕ(X)|G]− ϕ(E[X|G])− E[Z|G].

It therefore suffices to show that E[Z|G] = 0. To see this, we calculate

E[Z|G] = E
[
(X − E[X|G])ϕ

′

−(E[X|G])|G
]

= ϕ
′

−(E[X|G])E
[
X − E[X|G]|G

]
= ϕ

′

−(E[X|G])(E[X|G]− E[E[X|G]|G])

= 0,

and we are done.

We shall require a very basic fact of measure theory for the proof of Hölder’s inquality. Recall
that if U and V are L1-integrable on a space (Ω,H,P) then:

• E[U1A] ≤ E[V 1A] ∀A ∈ H ⇒ U ≤ V , a.s.

• E[U1A] = E[V 1A] ∀A ∈ H ⇒ U = V , a.s.

The reader for whom this fact is not obvious should try and prove it.

Proof. (of Hölder’s inequality). We first consider conjugate exponents p, q ∈ (1,∞). Note that
by the ordinary Hölder inequality, XY is integrable, so that E[|XY | |G] is well defined. Let U =

(E[|X|p |G])
1
p and V = (E[|Y |q |G])

1
q . Note that both U and V are G-measurable. Observe that

E[|X|p1{U=0}] = E
[
E[|X|p1{U=0}|G]

]
= E

[
1{U=0}E[|X|p|G]

]
= E[1{U=0}U

p]

= 0.

Hence, |X|p1{U=0} = 0 a.s., which implies

E[|XY | |G]1{U=0} = E[|XY |1{U=0}|G] = 0.
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Similarly, E[|XY | |G]1{U=0} = 0. It therefore suffices to show that E[|XY | |G]1H ≤ UV , where
H = {U > 0, V > 0}. For this, we use the result recalled above to prove that

E[|XY | |G]

UV
1H ≤ 1 a.s.

Note that the left-hand-side is defined to be zero on Hc. Let A ∈ G be arbitrary and define
G = H ∩A. Then

E

[
E[|XY | |G]

UV
1H1A

]
= E

[
E[
|XY |
UV

1G|G]

]
≤ E

[
|X|
U

1G ·
|Y |
V
1G

]
≤
(

E

[
|X|p

Up
1G

]) 1
p

·
(

E

[
|Y |q

V q
1G

]) 1
q

=

(
E

[
E[|X|p|G]

Up
1G

]) 1
p

·
(

E

[
E[|Y |q|G]

V q
1G

]) 1
q

= E[1G]
1
pE[1G]

1
q

= E[1G]

≤ E[1A].

Applying one more time the result recalled above, we conclude.

In the case where p = 1 and q =∞ then |XY | ≤ |X|‖Y ‖∞, so

E[XY |G] ≤ ‖Y ‖∞E[|X||G] = E[‖Y ‖∞|G]E[X|G].

We shall now derive Minkowski’s inequality from Hölder’s!

Proof. (of Minkowski’s inequality). 1
p + 1

q = 1, with p, q ∈ [1,∞].

|u+ v|p ≤ (|u|+ |v|)p ≤ 2p max /(|u|p, |v|p) ≤ 2p(|u|p + |v|p),

so in particular if u, v ∈ Lp then |u+ v|p ∈ L1 or if you prefer u+ v ∈ Lp. Consider

|u+ v|p = |u+ v| · |u+ v|p−1 ≤ |u| · |u+ v|p−1 + |v| · |u+ v|p−1.

Taking expectations yields

E[|u+ v|p|G] ≤ E[|u| · |u+ v|p−1|G] + E[|v| · |u+ v|p−1|G].

• If p = 1, |u+ v| ≤ |u|+ |v|, we are done.

• If p =∞, ‖u+ v‖∞ ≤ ‖u‖∞ + ‖v‖∞, we are done.

• If p ∈ (1,∞), we use Hölder’s inequality, conditional version:

E[|u+ v|p|G] ≤ E[|u|p|G]
1
p︸ ︷︷ ︸

♠

E[|u+ v|(p−1)q|G]
1
q + E[|v|p|G]

1
pE[(u+ v)(p−1)q|G]

1
p .

Note that (p − 1)q = (p − 1)( p
p−1 ) = q, a miracle has happened! Now divide on both sides

by ♠ (if ♠ = 0, we have 0 ≤ 0, O.K.). Then

E[|u+ v|p|G]1−
1
q ≤ E[|u|p|G]

1
p + E[|v|p|G]

1
p .

Since 1− 1
q = 1

p , we are done.
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10.2 Ex 10.2

The function x 7→ xp is convex for p ≥ 1. we thus use Jensen’s inequality (proven in 10.1). This
reads

|E[X|G]|p ≤ E[|X|p|G] a.s.

Taking expectations reads E[|E[X|G]|p] ≤ E[|X|p], or ‖E[X|G]p‖ ≤ ‖X‖p when taking taking the
power 1

p .

10.3 Ex 10.3

Let A ∈ G. Then
E[1A(X − E[X|G])] = E[1AX]− E[1AE[X|G]] = 0,

by the very definition of conditional expectation. Suppose Z ∈ L2(Ω,G,P), then we have Zn
L2

→ Z,
where Zn is a sequence of step functions of the form Zn =

∑nk
i=1 ai1Ani with Ani ∈ G. From this,

we have ∣∣E[(Z − Zn)(X − E[X|G])]
∣∣ C.S.≤ ‖Z − Zn‖L2‖X − E[X|G]‖L2 .

The first term on the r.h.s goes to zero as n goes to infinity. So for all Z ∈ L2(Ω,G,P) we have
that E[Z(X−E[X|G])] = 0, where both random variables in the product are in L2. In other words,
X − E[X|G] ∈ L2(Ω,G,P)⊥, whence E[X|G] = ProjL2(Ω,G,P)X, i.e. E[X|G] minimizes E[|X − Y |2]

among all Y ∈ L2 with Y a G−measurable function.

A second approach, which does not use the Hilbert space structure of L2 (namely 〈f |g〉 = E[fg]).
To this end, let Y be G-measurable. Then

E[|X − Y |2] = E[|X − E[X|G] + E[X|G]− Y |2]

= E[|X − E[X|G]|2 + |E[X|G]− Y |2 + 2(X − E[X|G])(E[X|G]− Y )]

= E[|X − E[X|G]|2] + E[|E[X|G]− Y |2] + 2E[E[(X − E[X|G])(E[X|G]− Y )|G]]

= E[|X − E[X|G]|2] + E[|E[X|G]− Y |2] + 2E[(E[X|G]− Y )E[X − E[X|G]|G]]

= E[|X − E[X|G]|2] + E[|E[X|G]− Y |2],

by the law of total expectation E[·] = E[E[·|G]] and since E[X − E[X|G]|G] = 0. Thus

E[|X − Y |2] ≥ E[|X − E[X|G]|2]

with equality if and only if E[X|G] = Y a.s.

Important Note: You should come back to this exercise in your future study of Gaussian spaces
(for example in the context of linear regression theory), since in specific cases the conditional
expectation will coincide with a linear combination of Gaussian vectors spanning (meaning the
closure of the span) what is here denoted as L2(Ω,G,P).

10.4 Ex 10.4

This is an essential result in probability theory and a special case of conditioning for random
variables that possess a density function. You should try and give the proof and result an inter-
pretation. The full proof is the content of page 151 in [4].

35



10.5 Ex 10.5

(a): We can proceed by direct computation:

E[exp(tX)] =

∫
R

1√
2πσ

exp

(
−1

2

x2

σ2

)
exp(tx) dx = exp

(
1

2
σ2t2

)
,

where we identified and used the fact that the density of N (σ2t, σ) integrates to 1.

Alternatively, we can proceed by using 7.6. If X ∼ N (0, σ2), then X
σ ∼ N (0, 1). By 7.6, the

function exp
(
aXσ −

a2

2

)
defines a probability measure, which implies it integrates to one. Taking

a = tσ yields
∫

R exp
(
tX − t2σ2

2

)
dx = 1, which implies that

∫
R exp(tX) = exp

(
t2σ2

2

)
.

(b): The Chernoff bound is immediate (just an application of Markov’s inequality with ϕ(x) =

exp(tx). So P({X > λ}) ≤ exp(−tλ) exp
(
t2

2 σ
2
)
♠ by (a).

(
− tλ + t2

2 σ
2
)′

= −λ + tσ2 = 0 ⇐⇒

t = λ
σ2 . As a consequence, ♠ ≤ exp

(
− 1

2
λ2

σ2

)
.

10.6 Ex 10.6

Take logs in order to make the law of large numbers (LLN) appear!

Yn =
(
Πn
k=1Xk

) 1
n ⇒ log(Yn) =

1

n

( n∑
k=1

logXk

)
.

Note: to avoid log(0) = −∞, equivalently, consider the uniform distribution on (0, 1] or on (0, 1).

Anyway, we don’t worry, because µ({0}) = 0. We have E[log(Xk)] = limε→0

∫ 1

ε
log(x) dx = −1.

Whence by the LLN, log(Yn)
n→∞−→ −1, a.s. Consequently,

(
Πn
k=1Xk

) 1
n n→∞−→ exp(−1), a.s.

10.7 Ex 10.7

Let M ∈ R. Then P({ Sn√
n
> M}) = Φ(M), where Φ is the cumulative distribution function of a

N (0, 1) random variable.

P
({ Sn√

n
> M

})
= E

[
1{lim infn→∞

Sn√
n
>M}

]
= E

[
lim inf
n→∞

Sn√
n
> M

]
≤ lim sup

n→∞
E[1{ Sn√

n≤M }
]

= Φ(M) < 1,

where in the last equality particular care was required to unfold and use the following chain of
equivalences:

1{·}(ω) = 1 ⇐⇒ lim inf
n→∞

Sn√
n

(ω) > M ⇐⇒ ∃ k : inf
n≥k

Sn√
n

(ω) > M ⇐⇒ lim inf
n→∞

1{ Sn√
n
>M}(ω) = 1.

Now let (Xi)i∈N be a sequence of random variables. We claim that lim infn→∞Xn is measurable
with respect to the tail sigma-algebra ∩∞k=1σ(∪n≥kσ(Xn)). Indeed, for x ∈ R:

{lim inf
n→∞

Xn ≤ x} = ∩k≥1(∪n≥k {Xn ≤ x}︸ ︷︷ ︸
∈Fn︸ ︷︷ ︸

∈Fk

) ∈ ∩k≥1Fk.
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Whence, by Kolmogorov’s 0-1 law, and since Φ(M) > 0, we have that P({lim infn→∞
Sn√
n

=

−∞}) = 1 for all M . Consequently,

lim inf
n→∞

Sn√
n

= −∞ a.s.

and

lim sup
n→∞

Sn√
n

= − lim inf
n→∞

− Sn√
n︸ ︷︷ ︸

→−∞ a.s.

= +∞ a.s.

(convergence of the lim inf to −∞ because −X1,−X2, . . . have normal distribution and are inde-
pendent).
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11 Solutions - Sheet 11

11.1 Ex 11.1

Define Fn = σ(Xi, i ≥ n) then Fn+1 ⊆ Fn for all n. Define

G :=
⋂
n≥0

Fn

as the tail σ-algebra.

By Kolmogorov’s theorem: A ∈ G ⇒ P(A) ∈ {0, 1}.

Let’s start working in R and consider

lim sup
n→∞

Xn = lim
n→∞

sup
k≥n

Xk.

supk≥nXk is Fn0
-measurable, for n ≥ n0 with n0 fixed. As a consequence lim supXn is Fn0

-
measurable, for any n0 ∈ N . Whence lim supXn is G-measurable. Note that the exact same
procedure/proof applies to lim inf Xn.

For A ∈ B(R) we define Θ := {ω : limXn exists in A}. Then

Θ = {lim inf Xn = lim supXn} ∩ {lim supXn ∈ A} ∩ {lim inf Xn ∈ A}.

The information provided by the last set is superfluous (already contained in the first two). But
so Θ ∈ G, and we’re in business for Kolmogorov’s tail theorem!

• (a) Just take A = R or A = R in the reasoning above. The next two points constitute an
adaptation of the reasoning above; we shall use Θ again as a name for the considered sets.

• (b) Notice that for A = R or A = R (not for any A, because of shifts),

Θ :=
{

lim
n→∞

n∑
k=1

Xk exists in A
}

=
{

lim
n→∞

n∑
k=k0

Xk exists in A
}

for any k0. The first set in the equality is in F1 but the reformulated version is in Fk0 . As a
consequence, Θ ∈ Fk0 for any k0 ∈ N. Thus Θ ∈ G. We are done.

• (c) Notice that for k0 fixed, 1
n

∑k0−1
i=1 Xk

n→∞−→ 0. As a consequence, for A ∈ B(R):

Θ :=
{

lim
n→∞

1

n

n∑
k=1

Xk exists in A
}

=
{

lim
n→∞

1

n

n∑
k=k0

Xk exists in A
}
.

The right-hand side is an element of Fk0 , whence Θ ∈ Fk0 for all k0 ∈ N. Thus Θ ∈ G. We
are done.

11.2 Ex 11.2

Preliminary remarks:

• for p > 1 we get E
[∑∞

n=1
|Xn|
np

]
=
∑∞
n=1

1
np <∞,

• for p = 0, the series jumps constantly by −1 or +1, so divergence,

• remains the case 0 < p ≤ 1. It’s not easy “just like that”. But we have an atomic bomb the
3 series theorem of Kolmogorov!
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We thus treat the last case, where 0 < p ≤ 1.

• Choose K = 1, then
∑∞
n=1 P

[∣∣Xn
np

∣∣ > 1
]

= 0.

• Yn = Xn
np 1{|Xpnp |≤1} = Xn

np thus
∑∞
n=1 E[Yn]︸ ︷︷ ︸

=0

= 0.

• E[|Yn|2] = E[
(
Xn
np

)2
] =

E[X2
n]

n2p = 1
n2p . But

∑
1
n2p <∞ ⇐⇒ p > 1

2 .

So as a conclusion,
∑∞
n=1

Xn
np converges a.s. if and only if p > 1

2 . When it does not converge a.s.,

then {
∑n
k=1

Xk
np exists in A ⊆ R} (taking here A = R is in the tail σ-algebra

⋂
n≥1 σ(Xk, k ≥ n).

We conlude then that
∑∞
k=1

Xk
np converges nowhere, a.s.

11.3 Ex 11.3

Point (a). Convention (notational): X ∼ Law(X1).

∞ = E[|X|] =

∫ ∞
0

P({|X| > t}) dt

≤
∫ ∞

0

P({|X| ≥ t}) dt

≤
∑
n∈N

P({|X| ≥ n})

=
∑
n∈N

P({|X| ≥ n})

where in the last inequality we used that the function t 7→ P({|X| ≥ t}) is decreasing and in the last
equality that the Xi are i.i.d. and have the same law as X. We also used exercise 8.2 in the first line.

By Borel-Cantelli II, P(lim supn→∞{|Xn| ≥ n}) = 1. In other wrods |Xn| ≥ n infinitely many

times. But Sn = Sn(n−1)
n + Xn

n . If Sn → a ∈ R, then Xn
n

n→∞−→ 0. But this is not true as
∣∣Xn
n

∣∣ ≥ 1
infinitely many times. A contradiction.

Point (b). Notation: Xi = X+
i − X

−
i in the usual sense and S+

n :=
∑n
i=0X

+
i , S

−
n :=

∑n
i=0X

−
i

(so we don’t exactly follow the usual convention for S+
n and S−n ). So Sn

n =
S+
n

n −
S−n
n . By the law

of large numbers,
S−n
n

a.s.→ E[X−1 ] as n→∞. Choose K > 0, then

lim
n→∞

S+
n

n
≥ lim
n→∞

1

n

n∑
k=1

X+
k 1{X+

k ≤K}

a.s.
= E

[
X+

1 1{X+
1 ≤K}

]
K→∞−→ E[X+

1 ] (dominated convergence)

= 0.

Consequently, limn→∞
S+
n

n =∞, a.s.

11.4 Ex 11.4

(Note: by extension, I = (a, b) for all a, b ∈ R, a < b).

F increasing: x ≤ y ⇒ F (x) ≤ F (y). Suppose x0 is a point of discontinuity, then ( ⇐⇒ )
limx↓x0 F (x) = F (x+) > F (x−) = limx↑x0 , whence there is a number qx0 ∈ Q such that F (x−) <
q < F (x−). Let D = {x0 ∈ I | x0 a point of discontinuity of F}. Then the map α : D → Q :: x0 7→
qx0

is injective. Whence Card(D) ≤ Card(Q), so D is finite or infinite countable.
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11.5 Ex 11.5

Sn :=
∑n
k=1Xk. We have E[S2

n] = E[
∑n
i=1X

2
i ] ≥ 1. In particular, since (Xi)

n
i=1 are independent,

Xi 6= 0.

Taking into account that terms with odd powers cancel out and the fact that |Xi| ≤ 1, we have
that

E[|Sn|4] = C4
2

∑
1≤i<j≤n

E[X2
i ] · E[X2

j ] +

n∑
i=1

E[X4
i ]

≤ C4
2

∑
1≤i<j≤n

E[X2
i ] · E[X2

j ] +

n∑
i=1

E[X2
i ].

We bound the first term:

C4
2

∑
1≤i<j≤n

E[X2
i ] · E[X2

j ] ≤ C4
2

∑
1≤i,j≤n

E[X2
i ] · E[X2

j ]

= C4
2

(∑
i

E[X2
i ]
)
·
(∑

j

E[X2
j

)
= C4

2E[S2
n]E[S2

n]

= C4
2E[S2

n]2.

As a consequence, E[|Sn|4]
♠
≤ (C4

2 + 1)︸ ︷︷ ︸
7

·E[S2
n]2.

Now we have

P(|Sn|2 ≥
1

2
E[S2

n]) · E[S4
n]

♠
≥ 1

4
· 1

7
· E[|Sn|4],

using Paley-Zygmund for the first inequality. As a consequence P(|S2
n| ≥ 1

2 ) ≥ 1
28 , whence P(|S2

n| ≥
1
28 ) ≥ 1

28 (i.e. taking ε = 1
28 ).

11.6 Ex 11.6

No solution provided. If any of you solved this technical exercise cleanly, I would be glad if you
shared your solution with the class.
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12 Solutions - Sheet 12

12.1 Ex 12.1

Suppose (Xn)n is not tight, then there is an ε > 0 such that for all K > 0: P({|Xn| ≥ K}) ≥ ε for
some n. Whence there exists (Xnk)k∈N such that P({|Xnk | ≥ K}) ≥ ε (notice k is varying).

We now claim that (Xnk)k has no subsequence that converges in law. Indeed, ∀ λ ≥ 0 and for any
subsequence Xnkj

, P({|Xnkj
| ≥ λ}) ≥ ε for j large enough.

But then by the Portmanteau theorem, if Xnkj
→ X, we would have that P({|X| ≥ λ}) ≥ ε, for all

λ ≥ 0. But this is absurd: for any random variable X : Ω→ R, we have limλ→∞ P({|X| ≥ λ}) = 0
(since ∩n∈N{|X| ≥ n} = ∅).

Important comment (for your future study of probability theory):

In the context of convergence in law, let S be a polish space (separable complete metric space).
Let P(S) = {µ | µ a probability measure on S}. Then one can endow P(S) with a metric d such

that d(Xn, X)
n→∞−→ 0 ⇐⇒ Xn

(L)−→ X. (we model convergence in law). In this “abstract set-up”,
what we have proved (which is called Prokhorov’s theorem) reads:

Let U ⊆ P(S), then U is tight ⇐⇒ U is relatively compact in P(S) (U compact in P(S)).

12.2 Ex 12.2

I shall use the lecture’s numbering (points a to e). There, we showed that (a) ⇐⇒ (b) ⇐⇒ (c).
We shall prove that (c) ⇐⇒ (d), that

(
(c) ⇐⇒ (d)

)
⇒ (e) and that (e) ⇒ (b), completing the

proof of the Portmanteau theorem.

For the first equivalence, (c) ⇐⇒ (d), we have:

lim inf
n→∞

P({Xn ∈ U}) ≥ P({X ∈ U}) ∀ U ⊆ R open

⇐⇒ lim inf
n→∞

1− P({Xn ∈ F}) ≥ 1− P({X ∈ F}) ∀ F ⊆ R closed

⇐⇒ lim inf
n→∞

−P({Xn ∈ f}) ≥ −P({X ∈ F}) ∀ F ⊆ R closed

⇐⇒ − lim sup
n→∞

P({Xn ∈ f}) ≥ −P({X ∈ F}) ∀ F ⊆ R closed.

Let’s turn our attention to the second implication:
(
(c) ⇐⇒ (d)

)
⇒ (e). We recall that a set A

is called a “continuity set” if P(∂A) = 0.

Let A be a continuity set, then
◦
A ⊆ A ⊆ A and P({X ∈

◦
A}) = 0. By (c), we have

lim inf
n→∞

P({Xn ∈
◦
A}) ≥ P({X ∈

◦
A}) ⇐⇒ lim inf

n→∞
P({Xn ∈ A}) ≥ P({X ∈

◦
A}),

and by (d):

lim sup
n→∞

P({Xn ∈ A}) ≤ P({X ∈ A}) ⇐⇒ lim
n→∞

P({Xn ∈ A}) ≤ P(X ∈ A).

Whence limn→∞ P({Xn ∈ A}) = P({X ∈ A}).

Now we finally prove that (e)⇒ (b). Recall from exercise 8.2 that for X : Ω→ R+ a non-negative
random variable, we have that

E[X] =

∫ ∞
0

P({X > t}) dt. ♥
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We claim this equality is a special case of the following:

Proposition: Let µ be sigma-finite on R and g : (R,B(R), µ)→ R+ be measurable, then∫
R
g dµ =

∫ ∞
0

µ({g > u}) dµ,

where µ is the Lebesgue measure.

Indeed, to retrieve ♥, take g(x) = x and µ = X∗P; then our claim reads:

E[X] =

∫
x µ(dx)︸ ︷︷ ︸

X∗P

=

∫
R
g(x) µ(dx)

=

∫
R
µ({g > u}) du,

and µ({g > u}) = (X∗P)({g > u}) = P({X > u}). So this is indeed the relation displayed above.

We now set out to show our claim holds true.

Proof. We shall work on
(
R× R+,B(R)⊗ B(R+), µ⊗ µ)

)
, where µ is the Lebesgue measure on R.

Note the product measure is sigma-finite, which is a prerequisite to using Fubini’s theorem. Let
A = {(x, u) ∈ R× R+ such that f(x) > u}. Then A can be rewritten as

A =
⋃
r∈Q∗+

(
{f > r} × [0, r]

)
∈ B(R)⊗ B(R+).

We have by Fubini that

(µ⊗ µ)(A) =

∫
R+

µ(Au) µ(du)

=

∫
R
µ(Ax) µ(dx).

The last integral is just
∫

R f(x) µ(dx). On the other hand,∫
R+

µ(Au) µ(du) =

∫
R+

µ({f > u}) µ(du)
µ({−∞,+∞})=0

=

∫
R+

µ({f > u}) µ(du).

We are done.

It remains to prove point (b). Let h : R→ R+ be bounded continuous. We have∫
h(Xn) dP =

∫
R
(Xn)∗P({h > u}) µ(du) =

∫ ‖h‖sup
0

(
(Xn)∗P

)
(h > u) µ(du) ♠.

h is continuous, so we have:

{h > u} ⊆ {h ≥ u} ⇒ ∂{h > u} ⊆ {h = u}.

Define

D :=
{
u ≥ 0 : X∗P({h = u}) > 0

}
=
⋃
n≥1

{
n ≥ 0 : X∗P({h = u}) ≥ 1

2

}
.
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Each set in the union is finite because the sets are disjoint 2 by 2. So D is countable. Whence
µ(D) = 0. So from (e):

(Xn)∗P({h > u}) n→∞−→ X∗P({h > u}), µ-a.s.,

whence by dominated convergence:

♠ n→∞−→
∫ ‖h‖sup

0

µ({h > u}) µ(du) =

∫
R
h(u) dµ.

Now for a general h, split h into h = h+ − h−.

12.3 Ex 12.3

This exercise is called “Slutsky’s theorem” in the literature and is an important result for statistics.

We have to show that

Yn
(L)−→ c⇒ Yn

(P)−→ c.

The converse implication is, of course, true. We recall the following definition:

µn
(L)→ µ if for any bounded function h : R→ R one has lim

n→∞

∫
h(x) dµn(x) =

∫
h(x) dµ(x).

Warning: In order for Yn
(P)−→ c, we need all Yn to be modelled on the same probability space

(Ω,F ,P), or else this would not make sense (write convergence explicitly). For convergence in law,
this assumption is not necessary, we are really just looking at the push-forward measure (the laws
of the random variables at hand).

(a) We have, for h continuous bounded, that∫
h(Yn) dP

n→∞−→
∫
h(c) dP

(Convergence in law), and we should show that

for all ε > 0 : P({|Yn − c| ≥ ε})
n→∞−→ 0.

We compute (for a fixed ε > 0):

0 ≤ P({|Yn − c| ≥ ε})
= E[1{|Yn−c|≥ε}]

≤ E[αε(Yn)]
n→∞−→ E[αε(0)]

= 0,

where the function αε ≥ 1{|Yn−ε|≥ε} with αε(x) ∈ [0, 1] ∀ x is defined as:

αε(x) :=


1 for x ∈ (c− ε, c+ ε)c

0 for x = c

∈ [0, 1] elsewhere, so that the function is continuous.

We are done.
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(b) (Xn) is tight (since it converges in law to X): for any ε > 0 there a Kε such that P({|Xn| ≥
Kε}) ≤ ε for all n ∈ N. Yn

(P)−→ c by point (b) (i.e. for any ε > 0: P({|Yn−c| ≥ ε})→ 0 as n→∞).
We write∣∣ ∫ h(Xn, Yn)− h(X, c) dP

∣∣ ≤ ∣∣ ∫ h(Xn, Yn)− h(Xn, c) dP
∣∣︸ ︷︷ ︸

α

+
∣∣ ∫ h(Xn, c)− h(X, c) dP

∣∣︸ ︷︷ ︸
β

and deal with each term separately.

• As for β, we note that h(·, c) is continuous bounded; since Xn
(L)−→ X, we have that β → 0.

• The reasoning for α is a bit more involved. Decompose R× R = A tB tB as follows:

– A = Kε × [c− ε̃, c+ ε̃],

– B = Kε × [c− ε̃, c+ ε̃]c,

– C = Kc
ε × R,

for some ε > 0 and ε̃ > 0. Now decompose

♠ = E[|h(Xn, Yn)− h(Xn, c)|︸ ︷︷ ︸
=:ℵ

]

into three parts:

E[|h(Xn, Yn)− h(Xn, c)|] = E[ℵ1A]︸ ︷︷ ︸
U

+ E[ℵ1B ]︸ ︷︷ ︸
V

+ E[ℵ1C ]︸ ︷︷ ︸
W

.

– For fixed ε > 0, using uniform continuity of (the continuous function) h (on the compact
Kε × [c− ε̃, c+ ε̃]), we have that U → 0 as ε̃→ 0.

– V ≤ ‖h‖∞P({|Yn − c| > ε̃})
– W ≤ 2ε‖h‖∞.

Putting all the bricks together yields

♠ ≤ U + 2‖h‖∞(ε+ P({|Yn − c| > ε̃})) ε,ε̃−→ 0

(where we first take ε̃ to 0 and then ε). We are done, α→ 0.

(c) We know that (Xn, Yn)
(d)−→ (X, c) by (b). We’re only interested in the distributional con-

vergence of Xn + Yn and XnYn, which is independent from the random variables “carrying” (by
means of pushing the measures forward) the distributions at hand (!). Indeed convergence in law

Xn
(L)−→ X reads∫

R
f d((Xn)∗P) −→

∫
R
f d(X∗P) for all continous bounded function f,

which only makes the laws (Xn)∗P and X∗P intervene. Let’s choose (Xn, Yn)n∈N and (X,Y ) in

Skorokhod’s representation theorem for vectors. Then (Xn, Yn)
a.s.−→ (X, c) on R × R (and thus in

law). But then (by continuity of + and *), we have XnYn
a.s.−→ Xc and Xn + Yn

a.s.−→ X + c. We
know that

a.s. convergence ⇒ convergence in probability ⇒ convergence in law,

so we are done!
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12.4 Ex 12.4

What is meant is: let µ and ν be two σ-finite measures on R such that for all a < b:

µ((a, b)) +
1

2
µ({a, b}) = ν((a, b)) +

1

2
ν({a, b}),

then µ = ν.

Claim: a sigma-finite measure µ on R can only have a finite number of atoms of positive mass.

Proof. Suppose it is not so. We have a growing sequence of sets An ⊆ An1
with ∪n∈NAn = R

and µ(An) < ∞ by σ-finiteness. Denote D = {x ∈ R | µ(x) > 0}. Suppose Card(D) > Card(N),
then there is an An such that Card(D ∩ An) > Card(N) (or else Card(D) = Card(N). But then
∞ > µ(A) > µ(D ∩An) =∞ (the last equality by exercise 1.6, a contradiction.

Now for all a, b /∈ D, we have µ((a, b)) = ν((a, b)) and R\D = R, since D is countable. So one can
choose an ↓ a with an ∈ R\D and bn ↑ b with bn ∈ R\D and then

µ((a, b))
n→∞←− µ(an, bn) = ν(an, bn)

n→∞−→ ν((a, b)).

12.5 Ex 12.5

This is called the “Dirichlet Integral”. You can find five methods of proof on Wikipedia: https://
en.wikipedia.org/wiki/Dirichlet_integral. These five methods are: the Laplace transform,
double integration, differentiation under the integral sign (Feynman’s trick), complex integration
and the Dirichlet kernel. I suggest you read the proof based on complex integration.
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13 Solutions - Sheet 13

13.1 Ex 13.1

• (a) ϕX(0) = E[ei·0·X︸ ︷︷ ︸
1

] = 1.

• (b) ϕaX+b(t) = E[eit(aX+b)] = eibtE[ei(taX)] = eibtϕX(at).

• (c) |ϕX(t)| = |E[eitX ]| ≤ E[|eitX |︸ ︷︷ ︸
1

] = 1 for all t ∈ R.

• (d) ϕ−X(t) = E[eit(−X)] = E[eitX ] = E[eitX ] = ϕX(t). ϕX(t) ∈ R ∀ t ∈ R ⇐⇒ ϕ−X(t) =
ϕX(t) ∀ t ∈ R. And by using the fact we are dealing with characteristic functions, this is

true if and only if X
(L)
= −X.

• (e) |ϕX(t+s)−ϕX(t)| ≤ E[|ei(t+s)X − eitX |︸ ︷︷ ︸
= |eitX |︸ ︷︷ ︸

=1

·|eisX−1|

] = E[|eisX − 1|︸ ︷︷ ︸
≤2

]→ 0, a.s. as s→ 0 by dominated

convergence, independently of the chosen t! Thus we have uniform continuity.

13.2 Ex 13.2

(a) We calculate

ϕX+Y (t) = E[eit(X+Y ]

= E[eitXeitY ]

= E[eitX ] · E[eitY ]

= ϕX(t) · ϕY (t),

using independence in the second equality.

(b) We start with a few measure-theoretic considerations. First, we recall that if X and Y are
independent, then (X,Y )∗P = µX ⊗ µY . Define

µX ∗ µY := (+)∗(µX ⊗ µY ),

which is a measure on R. (+ : R→ R :: (x, y) 7→ x+ y is continuous, thus measurable). Then

µX ∗ µY (A) = EµX∗µY [1A] =

∫
R2

1A(x+ y) µX(dx)⊗ µY (dy).

Similarly,

µX ∗ µY (f) = EµX∗µY [f ] =

∫
R2

f(x+ y) µX(dx)⊗ µY (dy).

Now to our problem. Let us calculate the characteristic function of µX ∗ µY :

ϕµX∗µY (t) = EµX∗µY [eitz]

z=x+y
=

∫
R2

eit(x+y)µX(dx)µY (dy)

Fubini
=

∫
R
eitx µX(dx)

∫
R
eity µY (dy)

= ϕX(t) · ϕY (t)

(a)
= ϕX+Y (t).
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So the law of X+Y ist µX ∗µY , by injectivity of the characteristic function on the set of probability
measures.

(c)

µX+Y (A)
(b)
= µX ∗ µY (A)

=

∫
R2

1A(x+ y) µX(dx)⊗ µY (dy)︸ ︷︷ ︸
pX ·pY µ⊗µ

=

∫
R2

1A(t) pX(s) · pY (t− s) µ(ds)⊗ µ(dt)

Fubini
=

∫
R
1A(t)

( ∫
R
pX(s) · pY (t− s) µ(ds)

)
µ(dt)

=

∫
R
1A(t)

( ∫
R
pX(t− s̃) pY (s̃) µ(ds̃)

)
µ(dt),

where we denoted the Lebesgue measure by µ. In the third last equality we made the following
change of variables: x+ y = t & x = s, which has determinant 1. In the very last equality and for
fixed t, we made the change of variables t− s = s̃, which also has determinant 1.

13.3 Ex 13.3

We shall deal with (b) first in order to recycle the result in (a). Other approaches are possible.

Part (b). Define
An := {Sn > m

√
n}

for some fixed number m ∈ R. Then by the Portmanteau theorem,

P(An) = P
({ Sn√

n
≥ m

})
n→∞−→

∫ ∞
m

e−
x2

2

√
2π

dx > 0 ♠,

since µ({y : 1{x≥m}(y) is discontinuous}) = 0, with µ the Lebesgue measure on R. Now

P(lim supAn) = P(∩n≥1 ∪j≥n Aj)
= lim ↓ P(∪j≥nAj)
≥ lim sup

n→∞
P(An)︸ ︷︷ ︸

≥supj≥n P(Aj)

♠
> 0.

Note: we also have that, for any k ∈ N:{
ω : Sn > m

√
n∞-often, n ∈ N

}
=
{
ω : Sn > m

√
n∞-often, n ∈ {k, k + 1, k + 2, . . .}

}
.

In other words, rephrasing the calculation above: lim supAn ∈ Gk for all k ∈ N, where Gk =
σ(Xk, Xk+1, . . .). Thus lim supAn ∈ ∩n∈NGk - the tail sigma-algebra. As a consequence, by
Kolmogorov, P(lim supAn) = 0 or 1. But P(lim supAn) > 0, so it is 1! We have proven

lim sup Sn√
n

= +∞. Now we have that also lim sup S̃n√
n

=∞ a.s., where S̃n = −X1−X2− . . .−Xn.

Thus − lim inf Sn√
n

=∞, which is equivalent to lim inf Sn√
n

= −∞ a.s.

Part (a). If Sn√
n
→ P, (then by the central limit theorem, X ∼ N (0, 1), since convergence in

probability implies convergence in law). Then ∃ a sub-sequence nk such that
Snk√
nk

a.s.−→ X. But

applying part (b) to (Snk)k∈N yields a contradiction: indeed,
Snk√
nk

cannot converge to any random

variable.
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13.4 Ex 13.4

We proceed by induction (or iteration). |a1|, |a2| |b1| |b2| ≤ 1 for a1, a2, b1, b2 ∈ C. Then

|a1a2 − b1b2| = |(a1 − b1)a2 + b1a2 − b1b2︸ ︷︷ ︸
b1(a2−b2)

|

≤ |a1 − b1| · |a1|+ |b1| · |a1 − b2|
≤ |a1 − b1|+ |a2 − b2|.

Now for n ≥ 2

|Πn
i=1ai −Πn

i=1bi| = |an ·Πn−1
i=1 ai︸ ︷︷ ︸
|·|≤1

−bn ·Πn−1
i=1 ai︸ ︷︷ ︸
|·|≤1

|

≤ |an − bn|+ |Πn−1
i=1 ai −Πn−1

i=1 bi|

induction
≤ |an − bn|+

n−1∑
i=1

|ai − bi|.

13.5 Ex 13.5

(a)

ϕXn(t) = E[eitXn ]

=

∫ n

−n

eitx

2n
du

=
eitx

it2u

∣∣n
−n

=
eitn − e−itn

(it)2n

=
i2 sin(tn)

2tni

=
sin(tn)

tn
,

where in the second equality we used that (Xn)∗P = 1[−n,n]
1

2n du.

(b) Let t be fixed. For n large enough we have |1 − t2k2

6n3 | ≤ 1 for all k = 1, . . . , n. Also since
|ϕXk(t)| ≤ 1 for all t, we have by exercise 13.4 that∣∣∣ϕZn(t)−Πn

k=1

(
1− t2k2

6n3

)∣∣∣ =
∣∣∣Πn

k=1ϕXk

( t

n
3
2

)
−Πn

k=1

(
1− t2k2

6n3

)∣∣∣
≤

n∑
k=1

∣∣∣ϕXk( 1

n
2
3

)
− 1 +

t2k2

6n3

∣∣∣.
Now by (a) we have

ϕXk

( t

n
3
2

)
=

sin
(
kt

n
3
2

)
kt

n
3
2

.

The function f(x) = sin(x)
x , f(0) = 1, has the Taylor series

f(x) =

∞∑
k=0

(−1)k

(2k + 1)!
x2k
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and hence there exists C > 0 such that |f(x)− 1 + x2

6 | ≤ Cx
4 for all x ∈ [−1, 1]. Thus for n large

enough we have ∣∣∣ϕXk(
t

n
3
2

)− 1 +
t2k2

6n3

∣∣∣ ≤ C k4t4

n6

and summing over k we get

n∑
k=1

k4t5

n6
≤ t5

n6
· n · n4 =

t5

n

n→∞−→ 0.

This proves (b).

(c) We note that

log

(
Πn
k=1

(
1− t2k2

6n3

))
=

n∑
k=1

log

(
1− t2k2

6n3

)
.

By using the Taylor series

log(1− x) = −(x+
x2

2
+
x3

3
+ . . .)

for |x| < 1, there exists C > 1 such that | log(1− x) + x| ≤ Cx2 for all x ∈ [− 1
2 ,

1
2 ]. For n large

enough we have t2k2

6n3 ≤ 1
2 and thus

n∑
k=1

log

(
1− t2k2

6n3

)
=

n∑
k=1

((
log

(
1− t2k2

6n3

)
+
t2k2

6n3

)
− t2k2

6n3

)
= − t2

6n3
· n(n+ 1)(2n+ 1)

6
+

n∑
k=1

(
log

(
1− t2k2

6n3

)
+
t2k2

6n3

)
.

The first term tends to − t2

18 as n→∞, while the sum is in absolute value less than C
∑n
k=1

t4k4

6n6 <
∼

1
n → 0. Thus

∑n
k=1 log

(
1− t2k2

6n3

)
→ − t2

18 and hence Π∞k=1(1 − t2k2

6n3 ) → e−
t2

18 , which is the

characteristic function of a N (0, 1
9 ).
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14 Students’ solutions

14.1 Jingeon An’s solution to...

14.1.1 Ex 7.2

Let µn(A) = µ(A∩An)
µ(An) and νn(A) = ν(A∩An)

ν(An) for all A ∈ G if µ(An) = ν(An) 6= 0. Then µn and νn
are probability measures and µn = νn on Π, so µn = νn by Dynkin’s π-λ lemma.

Now let Ãn := An/ ∪n−1
k=1 Ak, so that (Ãk)k is a partition of Ω. In the upcoming calculation, we

shall consider only those n ∈ N such that µ(Ai) = ν(Ai) 6= 0 (w.l.o.g. 6= 0 for all i ♠).

Then for any A ∈ G:

µ(A) =
∑
n≥1

µ(A ∩ Ãn)

♠
=
∑
n≥1

µ(A ∩ Ãn)

µ(An)
· µ(An)

=
∑
n≥1

µn(A ∩ Ãn) · µ(An)

=
∑
n≥1

νn(A ∩ Ãn) · ν(An)

= . . .

= ν(A).

So µ = ν.

14.1.2 Ex 8.4

Consider the measure space (N2, 2N2

, µ⊗ µ), where µ is the counting measure on N. Let

f(n,m) :=


−1 if n = m− 1

1 if n = m+ 1

0 otherwise.

Then obviously f is measurable (just consider the fact that the sigma-algebra is the power set),
and ∫ ∫

f(n,m)µ(dn)µ(dm) = 1 6= −1 =

∫ ∫
f(n,m)µ(dm)µ(dn).

The condition that is not satisfied in Fubini’s theorem is of course the integrability condition. Note
that we have played with the fact that N2 has a corner (the origin)! This counter-example would
fail on Z2.

14.2 Carl Johansson’s solution to Ex 7.5

We begin by proving the Jensen inequality for vector-valued random variables X : (Ω,F ,P)→ Rn.

Let ϕ : Rn → R be a convex function.

For any x0 ∈ Rn, there are two numbers ax0
∈ Rn and bx0

∈ Rn such that ϕ(x0) = 〈ax0
, x0〉+ bx0

and ϕ(y) ≥ 〈ay, x0〉+ bx0
for all y ∈ Rn. Then, taking x0 = E[X],
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ϕ(E[X]) = 〈ax0 ,E[X]〉+ bx0

= E[〈ax0 , x0〉+ bx0 ]

≤ E[ϕ(X)]

≤ ∞.

Note that in the first inequality, it is implicit that E[ϕ(X)−] <∞, which makes this operation legal.

Thus, since the function ‖ · ‖ : Rn → R :: x 7→ ‖x‖ is Borel measurable (because continuous), ‖X‖
is measurable. ‖ · ‖ is also convex and therefore, using the result above: ‖E[X]‖ ≤ E[‖X‖].

14.3 Jonas Papazoglou-Hennig’s solution to...

14.3.1 Ex 1.4

I don’t know about ”interesting” or ”innovative”, but hoping for ”working” :)

For the first part of the exercise, I propose a maximality argument:

Proof. Let Pn = {Π is a partition of T : Π ⊆ G, |Π| = n}. T is finite and there is at least one non-
empty Pn, namely P1 = {{T}}. Any partition of T can contain at most |T | elements, which would
correspond to the finest partition into singletons of the set T . Hence we can find 1 ≤ m ≤ |T |,
which is the maximal index such that Pm 6= ∅ and Pn = ∅ for all n > m.
Assume that there existed Π1,Π2 ∈ Pm such that Π1 6= Π2. Then there would be a partition set
A ∈ Π2, which is not in Π1. But since Π1 is a partition, there must be some B ∈ Π1, such that
C = A ∩B 6= ∅ and D = B \ C 6= ∅. Note that C,D ∈ G. But setting

Π̃ = Π1 ∪ {C,D} \ {B} ⊆ G

forms a partition of T with cardinality m + 1, contradicting maximality of m. Hence we have
shown that |Pm| = 1, i.e. there exists a unique maximal partition Π∗ ⊆ G.
Any element of G can be expressed through a finite union of elements in Π∗. Because if there
were some set E ∈ G, which could not be written as such, then E must properly intersect (i.e.
∅ 6= E ∪ A ⊂ E is a proper subset) at least one element of Π∗, allowing us to use an analogous
construction like before to create a larger partition of T contained in G, which would contradict
maximality of Π∗.
Conversely any non-maximal partition Π ⊆ G cannot form every set in G by taking unions. This
is because if Π is not maximal, there must be some F ∈ Π such that F is the disjoint union of at
least two elements in Π∗, and clearly either one of these elements cannot be formed by union of
sets in Π alone.
We therefore conclude, that the maximal partition Π∗ is the unique partition of T contained in G,
which allows every set in G to be written as a union of elements within it.

For the second part of the exercise, I use the principle of good sets:

Proof. Let {An}k=1,...,n be a partition of T as given. Take

G̃ = {A : A is a union of some of the A1, ..., An}.

Note that we allow the empty union, hence ∅ ∈ G̃. Also, for A ∈ G̃, we know that

A =
⋃
k∈I

Ak,

for some I ⊆ [n], therefore

Ac =
⋃

k∈[n]\I

Ak,
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which implies Ac ∈ G̃. Finally, let (Bn) ⊆ G̃ and B =
⋃
nBn. Then for each An there exists

In ⊆ [n] such that Bn =
⋃
k∈In Ak and thus

B =
⋃
n

Bn =
⋃
n

⋃
k∈In

Ak,

which implies B ∈ G̃.
We see that G̃ is a σ-field and conclude G̃ = G, proving that indeed every set in G may be written as
a union of the given partition. By the previous exercise, we further note that the sets {Ak}k=1,...,n

must be a maximal partition of T contained in G, hence it must be the unique generating partition
of G.

The reason for the name principle of good sets stems from the fact that we identify the system of
all desirable sets (in the above case G̃, the good sets) and can show some structure of this system
to conclude that it is in fact the entire σ-field.

14.3.2 Ex 2.7 (b)

I propose a ”0-1”-argument:

Proof. Y is X-measurable, therefore, for any k ∈ R,

{Y ≤ k}

is contained both in σ(X) and σ(Y ), where these sigma-fields are further independent by assump-
tion. Hence, we can write

P[Y ≤ k] = P[{Y ≤ k} ∩ {Y ≤ k}] = P[Y ≤ k]2,

where we used a trivial decomposition of the event {Y ≤ k} and consider the first set in the decom-
position to belong to σ(X), the second to σ(Y ), and then invoke independence of the sigma-fields
to write the probability of intersection as a product of probabilities. The equation immediately
yields that

P[Y ≤ k] ∈ {0, 1}.

Note that in general, the distribution function FY (k) := P[Y ≤ k] is increasing and right-continuous
in k, moreover

lim
k→−∞

FY (k) = 0, lim
k→∞

FY (k) = 1.

We can infer that
S = {k : FY (k) := P[Y ≤ k] = 1}

is closed and k∗ = inf S exists and is contained in S. Using that in this case, P[Y ≤ k] ∈ {0, 1} for
all k,

P[Y = k∗] = P

[ ∞⋂
n=1

{k∗ − 1/n ≤ Y ≤ k∗ + 1/n}

]
= lim
n→∞

(
P[Y ≤ k∗ + 1/n]− P[Y < k∗ − 1/n]

)
= 1− 0

= 1,

where we used continuity of measure for the second equality. So, Y = k∗ ∈ R a.s., as desired.

52



14.4 Salim Benchelabi’s solution to Ex 3.5

We set Ω = {1, 2, 3} and we take the π-system = {{1}, {2}, ∅,Ω}. We define a mapping µ such
that:

µ({1}) = µ({2}) = µ(Ω) = 1

µ(∅) = 0

To find a countable family (An)n of disjoint sets of S such that the union is in S, one has to set all
An to ∅ except for one which can be any set of S. If one considers these possibilities, the countably
additive property is indeed verified.
However the set {1, 2} verifies {1, 2} ∈ σ(S) and µ({1}) + µ({2}) > µ(Ω) ≥ µ({1, 2}). Then µ is
not a measure on σ(S).
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15 Past Exams

Dear students, here are the practice and final exams for the autumn semester 2020. Due to Covid,
the exam was open book & remote. This year, the format will not be the same. It will be on
campus and without any material.

15.1 December 2020 Practice Exam with Solutions

Question 15.1.1 (6 points).

Let (Xn)∞n=1, (Yn)∞n=1, X and Y be random variables. Are the following claims true or false?
(Answer only “true” or “false”, no need to justify your answers.)

(a) If E and F are two events with P[E] = 1, then P[E ∩ F ] = P[F ].

(b) If (Xn, Yn)
d→ (X,Y ), then Xn

d→ X and Yn
d→ Y .

(c) The set {∅, {1, 2}, {2, 3}, {1, 2, 3}} is a σ-algebra on {1, 2, 3}.

(d) The half-open intervals [a, b), a, b ∈ R, a < b, form a semi-algebra.

(e) The law of a random vector (X1, X2, . . . , Xn) is determined by the c.d.f.s FX1
, . . . , FXn .

(f) Two random variables X and Y are independent if and only if for any Borel sets A,B ⊂ R
we have P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B].

Grading: 1 point for every correct answer, −1 points for every wrong answer, 0 points for no
answer. Minimum number of points for the whole question is 0.

Solution 15.1.1.

(a) True.

Since E ∩ F ⊂ F , we have P[E ∩ F ] ≤ P[F ]. Note that 1 = P[Ω] = P[E ∪ Ec] = P[E] +
P[Ec] = 1 + P[Ec], so that P[Ec] = 0. Since F = (E ∩ F ) ] (F ∩ Ec), we have P[F ] =
P[E ∩ F ] + P[Ec ∩ F ] ≤ P[E ∩ F ] + P[Ec] = P[E ∩ F ].

(b) True.

Let h : R → R be bounded and continuous. Then the function g : R2 → R given by g(x, y) =
h(x) is also bounded and continuous and thus E[h(Xn)] = E[g(Xn, Yn)] → E[g(X,Y )] =
E[h(X)].

(c) False.

The complement of {1, 2} is {3} which does not belong to the set.

(d) False.

The empty set is not included in the given set. If we add the empty set, they do form a
semi-algebra.

(e) False.

Let X and Y be two i.i.d. Bernoulli random variables which take the values 0 and 1 with equal
probability. Then (X,X) and (X,Y ) have same marginal laws but their joint laws differ.
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(f) True.

By definition X and Y are independent if the generated σ-algebras σ(X) and σ(Y ) are. But
every event in σ(X) is of the form {X ∈ A} for some Borel set A (See Definition 1.22 and
Exercise 1.23 in the lecture notes.)

Question 15.1.2 (12 = 2 + 5 + 5 points).

Let (Xn)∞n=1 be a sequence of centered i.i.d. Cauchy random variables with scale parameter 1,
meaning that Xn has the probability density function p(x) := 1

π(1+x2) (x ∈ R). You may also

freely use the fact that the characteristic function of Xn is given by ϕXn(t) := e−|t| (t ∈ R).

(a) Show that An := 1
n

∑n
k=1Xk

d
= X1.

(b) Show that P[lim supn→∞An > λ] > 0 for all λ ∈ R.

(c) Show that lim supn→∞An =∞ almost surely.

Solution 15.1.2.

(a) Since the characteristic function determines the law of a random variable, it is enough to
show that ϕAn = ϕX1

. The characteristic function of n−1
∑n
k=1Xk is given by

n∏
k=1

ϕXk(t/n) = ϕX1
(t/n)n = e−|t| = ϕX1

(t).

(b) It is enough to show that for all λ ∈ R we have P[lim supn→∞An ≥ λ] > 0 with non-strict
inequality inside the probability. Note that {lim supn→∞An ≥ λ} ⊃ lim supn→∞{An ≥ λ}.
Since the events En =

⋃∞
k=n{Ak ≥ λ} are decreasing, we have

P[lim sup
n→∞

An ≥ λ] ≥ P[
⋂
n=1

∞⋃
k=n

{Ak ≥ λ}] = lim
n→∞

P[

∞⋃
k=n

{Ak ≥ λ}] ≥ lim
n→∞

P[An ≥ λ]

= P[X1 ≥ λ] =

∫ ∞
λ

dx

π(1 + x2)
> 0.

(c) Note that {lim supn→∞An =∞} =
⋂∞
k=1{lim supn→∞An ≥ k} so it is enough to show that

P[lim supn→∞An ≥ k] = 1 for every fixed k ≥ 1. By (b) and Kolmogorov’s 0–1 law we are
done if we show that lim supn→∞An ≥ k is a tail event. But note that for any m ≥ 1 we
have

lim sup
n→∞

An = lim sup
n→∞

1

n
(

m∑
k=1

Xk +

n∑
k=m+1

Xk) = lim sup
n→∞

1

n

n∑
k=m+1

Xk,

where the right hand side is measurable w.r.t. σ
(⋃∞

k=m+1 σ(Xk)
)

and hence it follows that

lim supn→∞An is measurable with respect to the tail σ-algebra generated by the random
variables (Xn)∞n=1.
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Question 15.1.3 (14 = 6 + 2 + 6 points).

Assume that (Xn)∞n=1 is a sequence of random variables converging in distribution to a random
variable X. Let Fn and F be the c.d.f.s of Xn and X respectively.

(a) Show that if F is continuous, then

lim
n→∞

sup
x∈R
|Fn(x)− F (x)| → 0 (∗)

(b) Give an example where F is not continuous and (∗) is not true.

(c) Assume that Xn has the density fn(x) =
(

1 − x
n

)n−1

1(0,n)(x), x ∈ R. Construct random

variables Yn
d
= Xn such that Yn converge almost surely. You have to show convergence for

your choice of Yn.

Hint: You can use the fact that limn→∞ n(x1/n − 1) = log(x).

Solution 15.1.3.

(a) Let us fix ε > 0 and try to show that supx∈R |Fn(x)−F (x)| ≤ ε for large enough n. Pick λ > 0
so big that P[X ∈ [−λ, λ]] ≥ 1−ε/2. Let also n0 ≥ 1 be so large that |Fn(±λ)−F (±λ)| ≤ ε/2
for all n ≥ n0. Then for any x with x > λ and n ≥ n0 we have

|Fn(x)− F (x)| ≤

{
1− F (λ), if Fn(x) ≥ F (x)

1− Fn(λ), if Fn(x) < F (x)
.

By the definition of λ we have 1− F (λ) ≤ ε/2 in the first case, while for the second case we
have

1− Fn(λ) ≤ 1− F (λ) + |F (λ)− Fn(λ)| ≤ ε

for n ≥ n0. Similar computation works for x < −λ as well.

Assume then that x ∈ [−λ, λ]. Since [−λ, λ] is compact, F is uniformly continuous on it and
we may pick a finite sequence−λ = x0 < x1 < · · · < xN = λ such that F (xk+1)−F (xk) ≤ ε/2
for all 0 ≤ k ≤ N − 1. Choose now n1 ≥ n0 so large that |Fn(xk) − F (xk)| ≤ ε/2 for all
0 ≤ k ≤ N − 1 and n ≥ n1. Then if xk ≤ x ≤ xk+1 and Fn(x) ≥ F (x), we have

Fn(x)− F (x) ≤ Fn(xk+1)− F (xk) ≤ |Fn(xk+1)− F (xk+1)|+ F (xk+1)− F (xk) ≤ ε.

Similarly if Fn(x) ≤ F (x), then

F (x)− Fn(x) ≤ F (xk+1)− Fn(xk) ≤ F (xk+1)− F (xk) + |F (xk)− Fn(xk)| ≤ ε.

In either case |F (x)− Fn(x)| ≤ ε.

(b) Let X = 0 be the constant random variable at 0 and let Xn = 1/n. Then F (x) = 1[0,∞)(x)
and Fn(x) = 1[1/n,∞)(x). Clearly F (x)− Fn(x) = 1 for x ∈ [0, 1/n).

(c) Let’s try to mimic the proof of Skorokhod’s representation theorem. The c.d.f. of Xn is given
by

Fn(x) =

∫ x

0

(
1− t

n

)n−1

dt =
[x
t=0
−
(

1− t

n

)n]
= 1−

(
1− x

n

)n
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for x ∈ [0, n]. We can compute the inverse Gn of Fn as follows

Fn(Gn(y)) = y ⇔ 1−
(

1−Gn(y)

n
)
)n

= y ⇔ (1−y)
1
n = 1−Gn(y)

n
⇔ Gn(y) = n(1−(1−y)

1
n ).

Let U be a uniform random variable on [0, 1] and set Yn := Gn(U). Then

P[Yn ≤ t] = P[U ≤ Fn(t)] = Fn(t),

so Yn
d
= Xn. Moreover, by the hint Gn(U)→ − log(1− U) almost surely.

Question 15.1.4 (8 = 4 + 4 points).

Let (Ωi,Fi)i∈I be measurable spaces and assume that Fi equals the power set σ-algebra P(Ωi) for
all i ∈ I.

(a) Show that if I is finite and Ωi is countable for all i ∈ I, then the product σ-algebra
⊗

i∈I Fi
equals P(

∏
i∈I Ωi).

(b) Give an example where I is countable and each Ωi is finite but the claim in (a) does not
hold.

Solution 15.1.4.

(a) The product σ-algebra is generated by sets of the form
∏
i∈I Ai with Ai ⊂ Ωi. In particular

it contains every singleton {ω} with ω ∈ Ω :=
∏
i∈I Ωi. Since Ω is countable, also every

subset of Ω is countable, and thus a countable union of such singletons.

(b) Let us choose I = Z and Ωk := {0, 1} for all k ∈ Z. Let T : {0, 1}Z → {0, 1}Z be the shift
operator mapping (ωn)∞n=−∞ 7→ (ωn+1)∞n=−∞. By Proposition 1.31 in the notes there does
not exist T -invariant probability measure on P({0, 1}Z). However the countable product
of uniform measures on {0, 1} defined on the product σ-algebra is T -invariant, since it is
T -invariant on the π-system of cylinder sets, and the set

G := {A ∈
⊗
k∈Z

P({0, 1}) : µ(A) = µ(T−1A)}

of T -invariant subsets form a λ-system:

• Clearly ∅ ∈ G.

• If A ∈ G then µ(Ac) = 1−µ(A) = 1−µ(T−1A) = µ((T−1A)c) = µ(T−1Ac), so Ac ∈ G.

• If (An)∞n=1 are disjoint elements of G, then

µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An) =

∞∑
n=1

µ(T−1An) = µ(

∞⋃
n=1

T−1An) = µ(T−1
∞⋃
n=1

An).
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Question 15.1.5 (6 points).

Either prove the following claim or give a counterexample: Two random variables X and Y are in-
dependent if and only if for all continuous and bounded f we have E[f(X)f(Y )] = E[f(X)]E[f(Y )].

Solution 15.1.5.

The claim is false. There are probably many ways to go about finding a counterexample but this
might need a bit of creativity. (In retrospect I think this problem might have been a bit too hard
as an exam question, although it’s a cool puzzle.)
Here’s one line of thought: Let us try to find a counterexample of a random vector (X,Y ) on R2

with p.d.f. p(x, y). Note that if (X,Y ) satisfies the condition given in the problem statement, then
so does (Y,X). It follows that if (X ′, Y ′) has the symmetric p.d.f.

p̃(x, y) =
p(x, y) + p(y, x)

2
,

then (X ′, Y ′) satisfies

E[f(X ′)f(Y ′)] = E[f(X)f(Y )] = E[f(X)]E[f(Y )].

If we further assume that X
d
= Y , then

E[f(X)] = E[f(X ′)]

and
E[f(X ′)f(Y ′)] = E[f(X ′)]E[f(Y ′)].

This also works in the other direction: If (X ′, Y ′) satisfies the condition then so does (X,Y ) (as

long as X
d
= Y ). We also know that independence implies the condition, so let us try what happens

if we assume that X ′ and Y ′ are indepedent, i.e. p̃ is of the form

p̃(x, y) = u(x)u(y)

for some p.d.f. u on R. Our goal would then to be to tilt this symmetric density to obtain a
nonindependent density p. Let’s assume that u is any continuous p.d.f. with u(0) > 0. Then for
small enough ε > 0 we may define

p(x, y) := u(x)u(y) + (x− y)h(x)h(y),

where h is a suitable function supported in [−ε, ε]. Then automatically we have p̃(x, y) =
u(x)u(y) and E[f(X ′)f(Y ′)] = E[f(X ′)]E[f(Y ′)] for every f . In order to have also E[f(X)f(Y )] =

E[f(X)]E[f(Y )] we need to ensure that X
d
= Y . This will follow if we have that∫

(x− y)h(x)h(y) dx = 0

for every fixed y ∈ R, in which case both X and Y will have u as their p.d.f. Thus it is enough to
pick h in such a way that ∫

h(x) dx = 0 and

∫
xh(x) dx = 0.

For example h(x) = cos
(
πx
ε

)
1[−ε,ε](x) works. Clearly then p(x, y) 6= u(x)u(y) in a set of positive

measure so X and Y are not independent.
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One can also play around with similar ideas in discrete setting. For instance starting from a
uniform law on {1, 2, 3} we may construct the i.i.d. pair (X ′, Y ′) which is uniform on {1, 2, 3}2.
We would then like to consider

p(x, y) =
1

9
+ σ(x, y)h(x)h(y)

where σ(x, y) has to be chosen so that σ(x, y) = −σ(y, x). For instance we can set σ(x, y) = Sx,y,
where S is the matrix  0 1 −1

−1 0 1
1 −1 0

 .

The condition for h will this time be

σ(x, 0)h(0) + σ(x, 1)h(1) + σ(x, 2)h(2) = 0

for any fixed x and a similar condition for any fixed y. This actually implies that h is a constant,
and we can choose that constant freely as long as 1

9 − |h|
2 is non-negative. For instance choosing

h = 1/
√

9 gives the counterexample p(x, y) = Px,y where P is the matrix 1
9

2
9 0

0 1
9

2
9

2
9 0 1

9

 .

Question 15.1.6 (6 points).

Let (X,Y ) be a uniformly distributed point in the unit disc in R2, meaning that the random vector
(X,Y ) has the p.d.f. p(x, y) := 1

π1{x2+y2≤1} w.r.t. the Lesbesgue measure.

(a) Compute the regular conditional distribution of X given σ(Y ).

(b) Next let us write (X,Y ) in the polar form (X,Y ) = (R cos(θ), R sin(θ)) with 0 ≤ R ≤ 1 and
θ ∈ [0, 2π). Show that R and θ are independent.

Hint: You may use without proof the fact that∫
R2

f(x, y) dx dy =

∫ 2π

0

∫ ∞
0

f((r cos(θ), r sin(θ)))r dr dθ

for any measurable f ≥ 0.

Solution 15.1.6. (a) By Exercise 6 of Sheet 9 the r.c.d. µ of X given σ(Y ) a.s. equals

µ(A,ω) =

∫
A
p(x, Y (ω)) dx∫

R p(x, Y (ω)) dx
=

∫
A

1
[−
√

1−Y (ω)2,
√

1−Y (ω)2]
(x) dx

2
√

1− Y (ω)2

Thus µ is a uniform distribution on [−
√

1− Y ,
√

1− Y ].

(b) It is enough to show that for any measurable f, g ≥ 0 we have

E[f(R)g(θ)] = E[f(R)]E[g(θ)].
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Note that if A(x, y) ∈ [0, 2π) denotes the argument of (x, y), then

E[f(R)g(θ)] = E[f(
√
X2 + Y 2)g(A(X,Y ))]

=
1

π

∫
R2

f(
√
x2 + y2)g(A(x, y))1[0,1](x

2 + y2) dx dy

=
1

π

∫ 2π

0

∫ 1

0

f(r)g(θ)r dr dθ

=
1

π

(∫ 1

0

f(r)r dr

)(∫ 2π

0

g(θ) dθ

)
=

(
1

π

∫ 2π

0

∫ 1

0

f(r)r dr dθ

)(
1

π

∫ 2π

0

∫ 1

0

g(θ)r dr dθ

)
=

(
1

π

∫
R2

f(
√
x2 + y2)1[0,1](x

2 + y2) dx dy

)(
1

π

∫
R2

g(A(x, y)) dx dy

)
= E[f(

√
X2 + Y 2)]E[g(A(X,Y ))]

= E[f(R)]E[g(θ)].

Question 15.1.7 (10 = 4 + 3 + 2 + 1 points).

Let (Xn)∞n=1 be a sequence of i.i.d. standard normal random variables and set

Zn :=

n∏
k=1

eXi−
1
2

for all n ≥ 1.

(a) Show that there exists p0 ∈ (0,∞) such that, as n → ∞, Zn converges to 0 in Lp for all
p ∈ [0, p0) but not in Lp for p ∈ [p0,∞].

(b) Examine whether Zn
a.s.→ 0 a.s. as n→∞ or not.

(c) Examine whether (Zn)∞n=1 is uniformly integrable or not.

(d) Examine whether (Zn)∞n=1 is tight or not.

Solution 15.1.7.

(a) Using the formula E[eaXk ] = e
a2

2 (Exercise 2 of Sheet 10) we compute for p ∈ (0,∞) that

E[Zpn] =

n∏
k=1

E[epXk−
p
2 ] = e

p2−p
2 n.

When p < 1 we see that this tends to 0, so Zn → 0 in Lp. Similarly when p ≥ 1 the sequence
Zn cannot converge, since if it did, it would have to converge to 0 (since it converges to 0 in
probability), but its norm doesn’t converge to 0. Thus p0 = 1 works.

(b) The sequence does indeed converge almost surely. To show this we may use Borel–Cantelli.
Fix p < 1 and notice that for all k ≥ 1 we have

P[Zn > k−1] ≤ E[Zpn]kp ≤ e
p(p−1)

2 nkp
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where the right hand side is summable over n. Thus for any k ≥ 1 there almost surely exists
nk ≥ 1 such that Zn ≤ k−1 for n ≥ nk. Since there are countably many such k, we can
almost surely find for all k ≥ 1 such nks simultaneously, and hence Zn converges to 0.

(c) Since Zn converges in probability but not in L1, it cannot be uniformly integrable.

(d) Since Zn converges almost surely, it converges in law and hence the sequence is tight.
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15.2 January 2021 Final Exam with Solutions

Note on the format: The January 2021 Exam was open book and remote due to COVID.
Questions were randomly shuffled and for some of the exercises only a random subset of all possible
questions appeared for a specific student. The exam lasted 4 hours, giving enough time for students
to handle IT issues (scanning, submitting).

Question 15.2.1 (6 points).

Let (Xn)∞n=1, (Yn)∞n=1, X and Y be random variables. Are the following claims true or false?
(Answer only “true” or “false”, no need to justify your answers.)

(a) If Xn
d→ X and Yn

P→ Y then (Xn, Yn)
d→ (X,Y ).

(b) If Xn
P→ X, E[|Xn|] ≤ 1 for all n ≥ 1, and X ∈ L1, then Xn → X in L1.

(c) If Xn → X in L4, then Xn → X in L2.

(d) If (Xn)∞n=1 is a sequence of positive i.i.d. random variables with E[X1] = π, then

1

n
log
( n∏
k=1

Xk

)
→ log(π)

almost surely as n→∞.

(e) If (Xn)∞n=1 are i.i.d. random variables with P[X1 = 1] = P[X1 = −1] = 1/2, then
∑n
k=1Xk√
n

converges in law to a standard normal random variable.

(f) If (Xn)∞n=1 are i.i.d. random variables with P[X1 = 1] = P[X1 = −1] = 1/2, then

cos
(∑n

k=1Xk
n

)
converges almost surely to 1.

(g) If µ and ν are two probability measures defined on a measurable space (Ω,F) that agree on
a semialgebra A ⊂ F such that σ(A) = F , then µ = ν.

(h) If E[
√
|Xn|] ≤ 4 for all n, then the sequence (Xn)∞n=1 is tight.

(i) There exists a σ-finite measure µ on the Borel σ-algebra of R such that µ({x}) > 0 for every
x ∈ R.

(j) If X is uniformly distributed on [0, 1], then its characteristic function is integrable.

(k) If the sequence (Xn)∞n=1 is tight, then supn E[|Xn|] <∞.

(l) If for all n ≥ 1 the random variable Xn is uniformly distributed in {1, 2, . . . , n}, then Xn/n
converges in law to a uniform random variable on [0, 1].

Grading: 1 point for every correct answer, −1 points for every wrong answer, 0 points for no
answer. Minimum number of points for the whole question is 0.

Solution 15.2.1.

(a) False.
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(b) False.

(c) True.

(d) False.

(e) True.

(f) True.

(g) True.

(h) True.

(i) False.

(j) False.

(k) False.

(l) True.

Question 15.2.2 (10 = 3 + 3 + 4 points).

Solve the following problems:

(a) Give an example of two probability measures µ and ν defined on the power set σ-algebra
F := P ({1, 2, 3, 4}) and a subcollection A ⊂ F with σ(A) = F such that µ(A) = ν(A) for
every A ∈ A but µ 6= ν.

(b) Give a counterexample to the following claim: If µ is a countably additive function defined
on a λ-system Λ on the sample space {1, 2, 3, 4} such that µ({1, 2, 3, 4}) = 1, then µ extends
uniquely to a probability measure on σ(Λ).

(c) Let X be an Rd-valued random variable. Show that there exists a sequence Xn of Rd-valued
random variables such that each Xn takes only finitely many values and Xn → X surely as
n→∞.

(d) Show that there does not exist a probability measure µ on the Borel σ-algebra B of R such
that µ(A+ x) = µ(A) for all A ∈ B and x ∈ R. (Here A+ x := {a+ x : a ∈ A}.)

(e) Show that the Borel σ-algebra on R is generated by intervals of the form [k2−n, (k + 1)2−n]
with n ≥ 0 and k ∈ Z.

(f) Show that if Xn
P→ X and (X2

n)∞n=1 is a uniformly integrable sequence then Xn → X in L2.

Solution 15.2.2.

(a) Take A = {{1, 2}, {1, 3}} and µ({k}) = pk, ν({k}) = qk with p1 + p2 = q1 + q2 and p1 + p3 =
q1 + q3. For instance p1 = p2 = p3 = p4 = 1

4 and q1 = p4 = 1
2 , q2 = q3 = 0. Then A generates

P({1, 2, 3, 4}) since it generates the singletons (we let the reader carry out the details).

(b) One counterexample is the following: Λ = {∅, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}}, µ({1, 2}) =
µ({3, 4}) = µ({1, 3}) = µ({2, 4}) = 1

2 . We can extend µ either as the uniform measure on
{1, 2, 3, 4}, or as µ({1}) = µ({4}) = 1

2 and µ({2}) = µ({3}) = 0.
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(c) We showed during lectures that any R−valued random variable Y admits a sequence (Yn)∞n=1

of simple random variables such that Yn → Y surely. Let us denote X = (X(1), . . . , X(d)).

Then for each X(k) there exists a sequence of random variables X
(k)
n → X(k) surely, and then

Xn := (X
(1)
n , X

(2)
n , . . . , X

(d)
n )→ X surely.

(d) Assume that such a probability measure exists. Then 1 = µ(R) = µ(∪∞k=1[k, k + 1)) =∑∞
k=1 µ([k, k + 1)), so one of the µ([k, k + 1)) has to be nonzero. But then by translation

invariance the sum is infinite, which is a contradiction.

(e) Let A be the collection of the intervals of the given form. We know that the Borel sigma-
algebra is generated by open intervals, so it is enough to show that (a, b) ∈ σ(A) for all a < b.
In fact we claim that (a, b) = ∪

{
[ k2n ,

k+1
2n ] : k ∈ Z, n ≥ 0, [ k2n ,

k+1
2n ] ⊂ (a, b)

}
. Clearly the

right hand side is contained in the left hand side. To show the other inclusion let x ∈ (a, b).
Then there exists n ≥ 0 such that x − 2n > a and x + 2n < b. Letting k = b2nxc we have
k
2n ≤ x and k+1

2n ≥
2nx−1+1

2n = x, so x ∈ [ k2n ,
k+1
2n ] ⊂ (a, b).

(f) First of all note that X ∈ L2 since by Fatou’s lemma E[X2] ≤ lim infn→∞ E[X2
n] <∞. Note

that we have that |Xn − X|2 → 0 in probability. It is enough to show that |Xn − X|2 is
uniformly integrable. Note that for any event A we have E[|Xn − X|21A] ≤ 2E[X2

n1A] +
2E[X2

1A], and the right hand side tends to 0 as P(A) → 0, uniformly in n by the uniform
integrability of (X2

n)∞n=1.

Question 15.2.3 (10 = 3 + 2 + 3 + 2 points).

Let (Xn)∞n=1 be a sequence of non-negative uniformly integrable random variables.

(a) Show that for any ε > 0 we have
∑n
k=1 P[Xk ≥ εn]→ 0 as n→∞.

(b) Show that n−1 max1≤k≤nXk → 0 in probability as n→∞.

(c) Show that n−1 max1≤k≤nXk → 0 in L1 as n→∞.

(d) Assume now that (Yn)∞n=1 is a sequence of identically distributed non-negative random vari-
ables in Lp for some p ≥ 1. Show that

lim
n→∞

n−1/pE
[

max
1≤k≤n

Yk

]
= 0.

Solution 15.2.3.

(a) Note that P({Xk ≥ εn}) = E[1{Xk≥εn}] ≤ E[Xkεn 1{Xk≥εn}] and hence∑n
k=1 P({Xk ≥ εn} ≤

∑n
k=1

1
εnE[Xk1{Xk≥εn}] ≤ 1

ε supk≥1 E[Xk1{Xk≥εn}], where the right
hand side goes to zero as n→∞ by uniform integrability.

(b) It is enough to show that for any ε > 0 we have P({n−1 max1≤k≤nXk ≥ ε})→ 0 as n→∞.
Note that P({n−1 max1≤k≤nXk ≥ ε}) = P(∪nk=1{Xk ≥ εn}) ≤

∑n
k=1 P({Xk ≥ εn}) → 0 by

point (a).

(c) By (b) it is enough to show that n−1 max1≤k≤nXk is uniformly integrable. We note that for
any t > 0 and n ≥ 1 we have E[n−1 max1≤k≤nXk1{n−1 max1≤k≤nXk>t}] ≤

∑n
n=1Xk1{n−1Xk>t}

and this further less than supk≥1 E[Xk1{Xk>nt}] ≤ supk≥1 E[Xk1{Xk>t}]. The right hand side
does not depend on n anymore and tends to 0 as t→∞.
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(d) Since Y pn are identically distributed, (Y pn )∞n=1 is a uniformly integrable sequence. By applying
(c) we thus have n−1E[max1≤k≤n Y

p
n ]→ 0 as n→∞, and by Jensen’s inequality

(n−
1
pE[ max

1≤k≤n
Yn])p = n−1(E[ max

1≤k≤n
Yn])p ≤ n−1E[ max

1≤k≤n
Y pn ])→ 0,

so (n−
1
pE[max1≤k≤n Yn])→ 0.

Question 15.2.4 (12 = 1 + 3 + 1 + 2 + 3 + 2 points).

Let (Xn,k)∞n,k=1 be a family of i.i.d. random variables such that each Xn,k has the p.d.f.

p(x) =
3 · 1[1,∞)(x)

x4
.

Denote Sn :=
∑n
k=1Xn,k for all n ≥ 1.

(a) Show that the expectation µ := E[X1,1] exists and compute its value.

(b) Show that n−1Sn → µ in L2.

(c) Show that n−1/2(Sn−nµ) converges in law to a normal random variable. What is its variance?

(d) Let X̃n,k := Xn,k1{Xn,k≤n} and S̃n :=
∑n
k=1 X̃n,k. Show that almost surely Sn = S̃n for all

large enough n.

(e) Prove that there exists C > 0 such that E[(n−1S̃n − E[X̃n,1])4] ≤ Cn−2 for all n ≥ 1.

(f) Show that n−1Sn → µ almost surely.

Solution 15.2.4.

(a) Since everything is non-negative we may simply compute E[X1, 1]

=
∫∞

1
x · 3

x4 dx = −3x−2

2

∣∣∞
1

= 3
2 =: µ <∞.

(b) We have E[|n−1Sn − µ|2] = E[(n−1
∑n
k=1Xn,k − µ)2] = E[(n−1

∑n
k=1(Xn,k − µ))2]

= n−2
∑n
j,k=1 E[(Xn,k − µ)(Xn,j − µ)]. Note that by independence the expectation is 0 if

j 6= k. Hence this equals n−2
∑n
k=1 E[(Xn,k − µ)2] = n−1E[(X1,1 − µ)2] = n−1σ2 → 0, where

σ2 := E[(X1,1 − µ)2] = E[X2
1,1]− µ2 =

∫∞
1

3
x2 dx− µ2 = 3− 9

4 = 3
4 .

(c) Note that Sn has the same distribution as
∑n
k=1X1,k, so Sn−nµ√

n
→ N (0, σ2 = 3

4 ) by the

Central Limit Theorem.

(d) By the Borel-Cantelli lemma it is enough to show that
∑∞
n=1

∑n
k=1 P({Xn,k ≥ n}) <∞. We

have P({Xn,k ≥ n}) =
∫∞
n

3
x4 dx = −1

x3

∣∣∞
n

, so
∑∞
n=1

∑n
k=1 P({Xn,k ≥ n}) =

∑∞
n=1

1
n2 <∞.

(e) We compute E[(n−1S̃n − E[X̃n,k])4] = n−4
∑n
i,j,k,l=1 E[(X̃n,i − E[X̃n,i]) · (X̃n,j − E[X̃n,j ]) ·

(X̃n,k−E[X̃n,k])·(X̃n,l−E[X̃n,l])]. Note that by independence only terms where i = j = k = l

or i = j 6= k = l (or permutations thereof) are nonzero. Hence this equals n−3E[(X̃n,1 −
E[X̃n,1])4]+

6Cn2
n4 E[(X̃n,1−E[X̃n,1])2]2. The second term is O(n−1) since E[(X̃n,1−E[X̃n,1])2] ≤

E[X2
n,1] = 3. For the first term we note that E[(X̃n,1 − E[X̃n,1])4] ≤ 16µ4 + E[X̃4

n,1] =

16µ4 + 16
∫ n

1
x43
x4 dx = 16µ4 + 48n, so the first term is also O(n).
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(f) By (d) and since E[X̃n,1] → µ as n → ∞, it is engouh to show that n−1S̃n − E[X̃n,1] →
0 almost surely. We will again use Borel-Cantelli. Note that for any ε > 0 we have∑∞
n=1 P({|n−1S̃n − E[X̃n,1]| > ε}) ≤

∑∞
n=1

E[(n−1S̃n−E[X̃n,1])4]
ε4 ≤ C

ε2

∑∞
n=1

1
n2 < ∞. Thus by

Borel-Cantelli |n−1S̃n−E[X̃n,1]| ≤ ε for n large enough. Considering the countable sequence

of epsilons ε = 1
m and m = 1, 2, . . ., we see that with full probability |n−1S̃n − E[X̃n,1]| → 0

as n→∞.

Question 15.2.5 (8 points).

Write a short essay (at most 500 words) on Carathéodory’s extension theorem and product spaces.
The essay should contain high level answers at least to the following questions:

• What is Carathéodory’s extension theorem?

• Why is it important?

• How is it proven? (A brief summary of main ideas, no details!)

• How can it be applied in the construction of product measures?

Solution 15.2.5. We refer to your lecture notes.
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