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Abstract

Dear Students, I shall publish possible solutions to the exercises in this file. This is an
“ongoing project”, where solutions will be updated, complemented & corrected along the
semester. You’re encouraged to work with the electronic version of this file.

For the present course, and beyond the lecture notes, I have selected two of the “classics”.
Durret’s “Probability, Theory and Examples” [1] is more famous than Jean-Francois le Gall’s
lecture notes at Ecole Normale “Intégration, Probabilités et Modeles Aléatoires” [4]. Both are
excellent, but I would personally favor the latter, which is more compact and gives the whole
spectrum of essential tools in an integrated, systematic manner.

As an advice for your future study of stochastic analysis: use Le Gall’s (this author rocks!)
book [3], which is self-contained and uncompromising. It is actually not easy to find a book that
strikes the “right balance” between length and precision. The book by Karatzas & Shreve [2] is
excellent too, but one easily gets lost in measure-theoretic considerations. Another advanced
reference you may wish to use in your later study of Brownian motion and stochastic analysis
is Revuz & Yor’s “Continuous Martingales and Brownian Motion” [5]. Except for reading
the literature, do the usual thing: type your questions on a search engine, check the Stack
Exchange, use Wikipedia and other blogs.



Contents

1

Solutions - Sheet 1
1.1 Ex1.1
1.2 Ex1.2
1.3 Ex 1.3
14 Ex1.4
1.5 Ex1.5
1.6 Ex1.6

Solutions - Sheet 2
2.1 Ex2.1
2.2 Ex22
2.3
2.4
2.5 Ex 2.5
26 Ex2.6
2.7 Ex 2.7 - Challenge

Solutions - Sheet 3
3.1 Ex3.1
3.2 FEx3.2
3.3
34
3.5 Ex3.5
3.6 Ex 3.6 - Challenge
3.7 Ex 3.7 - Challenge

Solutions - Sheet 4
4.1 Ex4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Ex 4.7
Ex 4.8 - Challenge

Solutions - Sheet 5
51 Ex5.1
52 Exb5.2
5.3
5.4
5.5 Ex 5.5
5.6 Ex 5.6 - Challenge

Solutions - Sheet 6
6.1 Ex6.1
6.2 Ex6.2
6.3
6.4
6.5 Ex6.5
6.6

13

16

17

19

7 Solutions - Sheet 7

71 ExT7.1 ... ... 23
72 ExT72 ... .. 23
73 ExT73 ..., .. 24
74 ExT74 ... ... 25
75 ExT75 ... ... 26
76 Ex76 ...... 27

81 Ex81 ...... 28
82 Ex82 ...... 28
83 Ex83 . ... .. 29
84 Ex84 ...... 29
85 Ex85 . ... .. 29

8.6 Ex 8.6 - Challenge 29

Solutions - Sheet 9 30

91 Ex91 ...... 30
92 Ex92 ...... 30
93 Ex93 ...... 30
94 Ex94 . ... .. 31
95 Ex95 ...... 31

10.1 Ex 10.1 . .. .. 33
10.2 Ex 10.2 . .. .. 35
10.3 Ex 103 . . . .. 35
104 Ex 104 . .. .. 35
10.5 Ex 105 . . . .. 36
10.6 Ex 106 . .. .. 36
10.7 Ex 107 . . . .. 36

11 Solutions - Sheet 11 38

11.1 Ex11.1 . .. .. 38
112 Ex 11.2 . . . .. 38
113 Ex11.3 . .. .. 39
114 Ex 114 . . . .. 39
115 Ex 115 . .. .. 40
116 Ex11.6 ... .. 40

12.1 Ex 121 . .. .. 41
122 Ex 122 ... .. 41
123 Ex 123 . . . .. 43
124 Ex 124 . .. .. 45
125 Ex 125 . . . .. 45

23 13 Solutions - Sheet 13

13.1 Ex 13.1
13.2 Ex 13.2
13.3 Ex 13.3
13.4 Ex 134
13.5 Ex 13.5

14 Students’ solutions
14.1 Jingeon An’s so-
lution to... . . . .
14.1.1 Ex 7.2 . .
14.1.2 Ex 84 . .
Carl Johans-
son’s  solution
to Ex 7.5
Jonas
Papazoglou-
Hennig’s  solu-
tion to... . . . ..
14.3.1 Ex 14 . .
14.3.2 Ex 2.7 (b)
Salim
Benchelabi’s so-
lution to Ex 3.5 .

14.2

14.3

14.4

15 Past Exams
15.1 December 2020
Practice Exam
with Solutions . .
15.2 January 2021
Final Exam with
Solutions

16 Exercise Sheets
16.1 Exercise Sheet 1
16.2 Exercise Sheet 2
16.3 Exercise Sheet 3
16.4 Exercise Sheet 4
16.5 Exercise Sheet 5
16.6 Exercise Sheet 6
16.7 Exercise Sheet 7
16.8 Exercise Sheet 8
16.9 Exercise Sheet 9
16.10Exercise Sheet 10
16.11Exercise Sheet 11
16.12Exercise Sheet 12
16.13Exercise Sheet 13

References

Index

46
46
46
47
48
48

50

50
50
50

50

o1
51
52

53

54

54

62

67
67
67
67
67
67
67
67
67
67
67
67
67
67

68

69



1 Solutions - Sheet 1

1.1 Ex1.1
For part (a), one could take fore example F; = {0, {1,2},{3,4}} and F» = {0,{1,3},{2,4}}.

In part (b), taking A = F; U Fo, we have that o(A) = P(Q). By setting (for example)

Pi({1}) =P1({2}) = P1({3}) = P1({4}) = 1/4

and

Pa({1}) = P2({4}) = 1/8
P2({2}) = P2({3}) = 3/8,
we have that P; # Ps.

Note however that if A were a m-system, these probabilities would then be equal.

1.2 Ex 1.2

e B = AU B\A ,the symbol Ul denoting a disjoint union . Then P(B) = P(A) + P(B\A) >
P(A).

o U, A, =122, (A\UrZ] Ay). This immediately yields
P(UAn> ZP(A\UAk><ZP
n=1 n=1 n=1

(term by term inclusion for the inequality).

e Let C), := A,\A,—1. Ag = () by convention. Then U,A,, = U, C,, and the C,, are disjoint.

Whence
P (U An> =P (U cn> =) P(Cy)
n=1 n=1 neN
SRS NLY
- 1R
e Let B, = A1\A,, for n > 1. Then By C By C ...B,, C Bp11 C .... We have A; =
U, B, UN,—, Ayn. As a consequence
P(U B +P([] Au)
n=1 n=1
= nhHH;o ) P(Bn) + P( Ol An)
So .
P(1) = Jlim 1 (P(A) = Pn)) +P([] 40)

which implies



1.3 Ex 1.3
P being a probability on Fy, we have that P(f) = 0 and P(Q) = 1. So 0,Q € Fo.

If A € Fo, we have P(A) € {0,1}, so P(A°) =1 —P(A) € {0,1}. Hence A° € Fy.

Let (Ap)nen be a sequence of elements of Fy. If P(A,,) =0 for all n € N, then

P (U An) < Z P(An) = Oa

neN neN

implying (J,,cn An € Fo. Similarly, if there is an ng such that P(A,,) = 1, then

1:P(An0)<P<U An> <1

neN

Whence P (U, ey An) = 1 and thus U,y An € Fo. O

neN

1.4 Ex 14

Several solutions have been suggested (see for instance 14). I'll explain here the one I think is most
“natural”, and which allows a mental representation of what is going on.

The idea is that of a “patchwork”, where every piece of the patchwork (or rug, or cloth) lights up
or remains turned off (so alternatively is labelled 0 or 1 if one prefers). Every configuration of 1’s
(or light-up pieces) would be one element of the sigma algebra.

One can start by grouping elements of the (finite) sigma-algebra by (distinct) pairs A;, AS where
i=1,...,m. It is then immediate that C = {(\~, B; | B; € {4;, A{}} C F is a disjoint covering
of T. The empty set might appear several times, in which case you keep just one of them (which
is of course the convention in set theory).

Now by construction, every element of the initial sigma algebra G can be expressed in a unique
way as a disjoint union of elements of C (to prove mentally: elements of C are disjoint and cover
T). An m-tuple of zeros and ones corresponds to one element (with the possibility of several tuples
yielding the empty set). Uniqueness also follows immediately (try and explain why: the key is
“disjoint and generating”).

Note: Please be aware that my initial discussion of zeros and ones (for each piece of the patch-
work) does not correspond to the m-tuple of zeros and ones discussed in the previous paragraph
(in the first case, I am talking about elements of the partition, in the second, of a decision process
of elements of the sigma algebra).

The converse part of the exercise should now be a triviality in light of the discussion above.

1.5 Ex 1.5

e Define A; = {(a,b) | a,b € Q}. Immediately, o(A;) C B. Since Card(NxN) = Card(N), A4,
is countable. If U C R is open, then for all = € U, there is a,b € Q such that = € (a,b) C U.
So U can be written as a countable union of elements of A;. Whence B C o(A;). Thus

CT(.Al) = B.

e Define Ay = {[a,b] | a,b € Q. Since [a,b]¢ is open, we immediately find that o(A4s) C B.
Note again that As is countable. As above, for U open, x € U, there is a,b € Q such that
x € [a,b] C U. So U can be written as a countable union of elements of A;. Whence
B C 0(Asz). We are done.



o A := {(—o0,t) | t € Q}. Such a set (—o0,t) is open, so o0(A3) C B. Now for t1,t2 € Q,
t1 < to the set [t1,t2) = (—00,t2)\(—00,%1), so [t1,t2) € 0(A3). Again, an open set U € R
can be covered by a countable union of sets [t1,t2) with t1,t2 € Q. So B C o(A3z) and thus
O'(.Ag) = B.

e Same reasoning as in the list point, noting that (oco,¢] is closed and operating a countable
cover of the type (t1,%2] with ¢1,t2 € Q.

1.6 Ex 1.6
Suppose that

szzly ‘

z€[0,1]

then for all n > 1 there exists a finite set S,, € [0, 1] such that

<> P <l

z€[0,1]

1—

S|

Consider .

o € US”

n>1
with p, > 0. There is an m such that p, > % Then
1 1
Yoo os1-—+—=1,
m o m
z€SmU{zo}

contradicting #. Note we are summing over a finite set. [



2 Solutions - Sheet 2
2.1 Ex 2.1

This exercise is mostly a question of definition and playing around. Not the sexiest exercise either,
but it helps you get your hands dirty.

We recall that B(R) = o ({[~00,a),a € R} U {(b, 0], b € R})

Claim 1. B(R) C RN B(R), the right-hand side denoting the trace sigma algebra of B(R) on R.

Proof. For a,b € R with a < b one has (a,b) = [~00,b) N (a, 0] € B(R).

But (a,b) NR = (a,b) € B(R) and by exercise 1.5, we know all such sets generate B(R). So B(R) C

b
R N B(R) since B(R) is a sigma-algebra on R containing the generator {(a,b) | a < b;a,b € R} of
B(R). O

Claim 2. {—~},{oc} € B(R) (and thus R € B(R)).
Proof. {—oc} =,enl—00, —n], {+00} =,,en[n +00] and R = R\{—o00, +00}. O
Claim 3 B(R) = B(R) U (B(R) U {—o0}) U (B(R) U {+00}) U (B(R) U {—00, +0o0}).

Proof. Any set on the right-hand side is in B(R) by our two previous claims and all these sets form
a sigma algebra (verify! trivial). O

CONSEQUENCE: B(R) NR C B(R) and thus B(R) R = B(R).
Now back to our exercise. X : (Q,F) — (R, B(R)).
“="
o {—0} € BR)= X ({-o0}) € F.
e {+0} € BR) = X 1({+o00}) € F.
e Ac BR)=AeBR)= X YA erF
e
By our claim above, a set A € B(R) can be split into a set A € B(R) C B(R) with either, both or

none of {+oc} or {—oco}. Then X~ 1(4) = X 1(A) LU X1 ({—o0}) U X1 ({+00}) € F.

2.2 Ex 2.2
Note that X ~1(G) = {X~}(B) | B € G} (set of all preimages of sets).
e X'0)=0,500ec X G)

e Let A € X 1(G) then A = X 1(B) for some B € G. Then A° = (X~}(B))¢ = X~ }(B°).
B¢eG= A°e X 1(G).

e Suppose A, € X~}G) for all n € N, then 4, = X~(B,) for some B,, for all n. Then
UAn = Unen X 1 Bn) = X H(Upen Bn)- Since U, ey Br € G, we are done. [



2.3 Ex 23

e “ =" A projection 7 : (X1,...,X,) = Xi == (#1,...,2,) — 1z} is continuous, whence
B(R™) — B(R) measurable (see 2.2).

o “<= 7 Let A, € B(R") for i = 1,...,n and (X1,...,X,) : (O, F) — (R",B(R")). Then
(X1,..., X)) 1A x - x Ay,) = _1(A )n. X, 1(A,). This intersection is in F by
hypothesis.

Consequently B(R") =0 ({41 x --- x A, | A1,..., 4, € BR)})
C{BeR"|(Xy,...,X,)"Y(B) € F}. So (X1,...,X,) is F — B(R")-measurable. O
24 Ex 24

(a) Consider (Q, F) X (R,B(R)) EN (R, B(R)), where X and f are measurable. Let A € B(R). Then,
f being measurable, we have f~! € B(R). X being measurable, (foX)"}(A4) = X1 (f~1(A)) € F.
So f o X is measurable.

(b) By exercise 2.3, the function (X,Y) : Q - R" : w = (X(w),Y (w)) is measurable. We now
use the following crucial fact, and prove it immediately hereafter: a continuous function is
measurable with respect to the sigma-algebras generated by the topologies at hand.

Proof. Let f: (U,U) — (V,V) be continuous, with U, V topologies. In other words f~1(A) € o(U)
forall Ae V. Let X ={ACV | f (A € o)} ¥ is a sigma-algebra and by construction we
have that V C 3, whence o(V) C X. So f~(a(V)) C o(Ud). O

Now, we simply note that addition, subtraction and multiplication are continuous functions from
R? to R. As a consequence, by composition and by point (a), the functions at hand are measurable
(for instance: + o (X,Y)).

(c) Division just requires no notice that \ : R x R\{0} — R :: (z,y) — ¥ is continuous too, whence

measurable. As a consequence, by (a), % =\ o (X,Y) is a measurable function too.

25 Ex 2.5

Let X, : (2, F) — (R,B(R)) be measurable functions, for all n. Let X denote the respective four
functions studied. We immediately notice that if X,, converges point-wise surely (for an almost
surely version, wait for a later discussion involving completeness of the underlying probability
space), then it also converges in the lim inf or lim sup since, whence point-wise (surely) convergence
implies measurability.

e The sets of the type [—0o,a) with a € R generate the sigma algebra B(R), so it’s enough to
prove that X ~1([~00,a)) € F for all a € R. This however is clear because

X_l([—oo,a)):{w\rilglf\lX( <a}—U{w|X ) <a}eF,
neN

since all elements on the right-hand side are in F. So X is F — B(R) measurable.
e Exact same reasoning with (for example) sets of the type (a, o] generating B(R).
e Notice that
X(w) = liminf X, (w) = sup <énf X (w )>

n—oo n>0

By the two bullet points just discussed, the function on the r.h.s is measurable.

e Exact same reasoning with sup and inf reversed.



2.6 Ex 2.6

Grateful thanks to Wei Jiaye for reviewing and typing my solution.

This is a special case of a construction called product measure on a product space . We solve
and calculate the easiest case, in which all sets ; of Q = Qy x - -- x €, are finite and the o-algebra

is P(Q2).

First, we show that P is a probability measure. Set P(0)) = 0.

e For disjoint sets A,,, we immediately have
P(ITA4n) = > _ P(Aw).
neN

To show that P(2) = 1, we calculate

Y Plnw)) = > Pi{en})---Pu({wa))

Wi €Q;,1<i<n Wi €Q;,1<i<n

= ( > P1({W1})> ( > Pz({w2})> ( > Pu({wn})

w1 €Q1 w2 €€

1

wn €y

e Consider the projection
7 (2, P(Q),P) = Qp, where w = (w1, ..., wy) — wg,

which has a law given by Pg.

P{w:mw) =wi )= Y Pilfw}) - Prl{wi}) - Pulfwn}) = Pe({wn, }-

w; €Q; Wiy fixed

As a consequence, noting that Xj, = X oy, for any A € B(R) we have

P(Xk(w) € A) = P(Xy o i (w) € A)
=P{w: m(w) € Xk_l(A)})
= Pi(X;1(4))
= Pr(Xk(wr) € A),

so X}, has the same law as Xj.

e Finally we prove independence. If we can show that mq,...,m, are independent, then X; o

T1,..., Xy 07y, are independent too. We have

Plw:m(w) € A1,...,m(w) € Ap) =P(A1 X -+ x A,)

= P(m(w) € A1)P(ma(w) € Az)---P(m,(w) € 4,,),

which completes the proof. [J

2.7 Ex 2.7 - Challenge

See also section 14 for a more elegant solution of point (b) (in my opinion).



Solution 1. (a) Let B, = A, if P[A,] = 1 and B, = A}, if P[A,] = 0. Define E := ﬂﬂ B,,. Then if
A > E we have P[A] = 1. Conversely consider G' == {B€ G: B> Eor B° > E}. Theset G’ isa
o-algebra: Clearly @ € G’ and if B € G then B° € G'. Also if (B,),, is a countable family of sets
in G', then either one of B, contains E, in which case so does Un B,,. Otherwise E ¢ B foralln
and thus @\ |J, B, =, B, > Esothat|J, B, € G'. Moreover A, € G' forallnso G’ = G. In
particular if P[A] = 1 for some A, then A > E.

(b) For any Borel measurable B C R the eventY € B is also in ¢(X) and we have P[Y € B] =
P[Y € B)?, implying that P[Y € B] € {0, 1}. Thus we may apply (a) with G = o(Y). In particular
there is some E = {Y € E'} with measurable E’ ¢ Rsuch that P[Y € A] = lifand onlyif A > E'.
But now if x € E’, we must have P[Y = x] = 1 (and E = {x}) since otherwise P[Y # x] = 1 but
R\ {x} » E'.

(c)LetQ =T =Rand F =% = {A c R : either A or A® is countable}. Set P[A] = 0if A is
countable and IP[A] = 1 otherwise. Clearly all events are pairwise independent. Moreover if we
let X(x) = Y(x) = x for all x € {2 then Y is clearly X measurable but P[Y = x] = 0 forall x € R.



3 Solutions - Sheet 3

3.1 Ex 3.1
e G is a A-system (or “Dynkin”-system), so Q € G.
e G being a Dynkin-system, A € G = A°¢ € G.
o Let Ay, As,--- € G, we now show that (J, .\ Ar € G.
Defining By = Ag\ Utl Aj, we immediately have that |, .y Ax = ||,en Br-

But By, = AN (ﬂk ! A°) € G, using that G is both a A- and a w—system. Finally, G being
a A-system shows that | | .Br €G. O

3.2 Ex 3.2
R = {U?Zl Aj | A; ’s are disjoint cylinder sets,n > 1}

R is trivially non-empty, and we shall check that (1) A € R = A € R and (2) R is closed by
finite intersection.

1. If A is a cylindrical set, it can be written A = X; x X3 x ... X,, x {0, 1}N for a certain n
with X3,...,X,, C€{0,1}. Then by a dictionary-type logic, one has that

A= X x {0, 1IN U X x XS x {0, 1NU.. X x X, x XEx {0,1}N e R.
2. Let A and B be two cylindrical sets with A = X; x X5 x ... X,, x {0,1}N, B =Y} x Y5 x
.Y, x {0,1}N, with the X; and Y; subsets of {0,1} as above. Then
ANB=(X;NY)) x - x (X,NY,) x{0,1}N e R.
Note that if any of these intersections X; NY; is the empty set, then AN B is the empty set.

3. We check (1) for an element of R. Consider to this end A = A 1JA? ..U A", where the A* ’s
are disjoint cylinder sets. We have (by elementary set theory) that A¢ = (A1)¢n-..N(A")°
and by taking the complementary as above, one can write

(AMe=cfu---uck,

where the C'J’v€ are disjoint cylinder sets for fixed k and all j = 1,...,m,. Going over to
indicator notation we have that

Mn

1Ac:1(A1)c...1(An)c:(lcll+~~‘+1c}n1)...(10{1+~~+10n Z Zlcl .o 1lom

In
Ji=1 Jn=1

101 ---1gr corresponds to the indicator of C; i, N---NCY , which is a cylinder set (see above).
All of them are disjoint. Thus A° € R.

4. We check (2) for an element of R. For this take A = A'U---U A" and B= B*U--- L B™
for disjoint cylinder sets A',..., A™ and B',..., B™. Then from expanding

1AmB:(1A1—|—...—|—1An)(131_|_..._|_1Bm)’

we can see that A* N BJ (1 <i<n,1<j<m)are disjoint cylinder sets whose union is
ANB [O.

10



3.3 Ex 3.3

Grateful thanks to Wei Jiaye for reviewing and typing my solution.

First, since R is non-empty, there exists an A € R, and thus A¢ € R. This implies that T' =
AU A€ R (hence ) =T¢ € R). Let u: R — [0,00] be a countably additive map, i.e.,

" (H An> =Y p(Ayn), where A, e RVn €N, and [] A, € R

neN neN neN
e For any A € P(T), we have ACT,T € R, and u(T) < 00, so u*(4) < oc.

e For any A C B with A, B € P(T), a cover of B is also a cover of A, so u*(4) < pu*(B) is
trivial.

o Let A € R, then p*(A) < p(A) holds trivially. To show the other side, it suffices to show
that for any (A,)nen such that A C J, ey An, we have pu(A) < >0\ #(Ay). Indeed, let
B, =A,NA€R,and C, := B, \ (U;L:_ll Bj) € R, s0 (Cp)nen forms a disjoint cover of A.

Since for any n € N,C,, C A,,, we have u(C),) < u(4,) (because u(A4,\Cp) > 0, and using
countable additivity again), the countable additivity of p implies

(A = ST u(C) < 3 ulAn):

neN neN

e Fix ¢ > 0. For any countable family (A, )nen of subsets of T', there exists (A};)(i’k)eNxN such

that
€

27,Vk.

A€ |JA4p and D p(A}) < pt(Ag) +

€N €N

Note that Uyen Ak € Ui pyenxn Al which implies

" (U Ak) ST X (A + 5) = St

keN keNieN keN keN

3.4 Ex 34

A pseudometric d distinguishes itself from a metric d : X x X — R in that dlz,y) =0=>z =1y
whereas d(z,y) = 0 could happen for x # y (so we don’t have to prove the former condition).

Just to illustrate this behaviour, with the symmetric difference AAB = A\B U B\ A, we could
imagine that p*(A\B) = p*(B\A) = 0 (= p*(AAB) = 0) with both sets being non-empty (and
thus A # B). This happens all the time: think o the Lebesgue measure on R with the Borel
sigma-algebra (implying pu* = p on B(R)). For example take A =QU[—1,1] and B =QU [-1,1].
Then AAB ={z €Q||z| > 1}, u(AAB) =0.

o d(A,A) = p*(AAA) = p*(0) = 0. The last equality comes from the fact we have assumed
that T € R (exercise 3), whence () € R. The last equality requires a bit of justification. by
hypothesis T € R whence ) € R too. By countable additivity, the equality follows.

e AAB = BAA whence d(A, B) = d(B, A).

e A\B C (A\C)U (C\B) and B\B C (B\C) U (C\A). Consequently, taking ”unions on
both sides” yields AAB C (AAC) U (CAB). So p*(—) < pu*(=) + p*(=) = d(A,B) <
d(A,C)+d(C,B). O

11



3.5 Ex 3.5

See also chapter 14 for an original alternative solution.
Take © = (0,1) and the pi-system II = {(0,¢) | 0 < ¢ < 1}. Define p : II — [0,00] :: A+ 1.

 is trivially seen to be countably additive (sigma additive), because no element of II can be written
as a union of more than one element of IT, namely itself. We also have that o(IT) = B((0, 1)).

Should p extend to a measure, we would have that

um=u<ﬂm302nmmm;»=L

n n—00
neN

where the second last equality (continuity of measure) is true because one of the sets in the inter-
section has finite measure.

But then we have that

1= p((0,1)) = p(0U (0,1)) = u(®) + u((0,1)) =1 +1 =2,

a contradiction. [

Note: Coming back to #, here is a counter-example when the considered sets A,, satisfy p(4,) =
oo for all n and A, 11 C A,,. Take the Lebesgue measure on R, then

u<ﬂvum)=mm:a

neN

but p((n,o0)) = oo for all n and of course lim,, o 1((n,0)) = co.

3.6 Ex 3.6 - Challenge

No solution provided. Your solutions are welcome!

3.7 Ex 3.7 - Challenge

No solution provided. Your solutions are welcome!

12



4 Solutions - Sheet 4

4.1 Ex 4.1

o Fx(z) =P(X <z). If a <bthen {X <a} C {X < b}. Taking probabilities on both sides
reads Fx(a) < Fx(b).

e Suppose a sequence (an)nen 4 @, then {X < a} = ), (X < an}, so Fx(a) = P(—) =
lim, o P(X < a,) =lim,_,n Fx(a,). O
4.2 Ex 4.2

For part (a), we simply unfold the definitions and use independence:

Fy(z)=PY <z2)=P(X; <uz,...,X, <x)
=P{X: <z}n---n{X, <z})
(

X1 <z)...P(X, <z

For (b), we first see that P(min(Xy,...,X,) >a) =P(X; > qa,...,X,, > a) =1}_P(X} > a) &,
using independence.

e If o > 0 we have that & = II?_, exp(—Apa) = exp(—(A1 + - - + Ag)a). SoP(min(Xy,...,X,) <
a)=1—exp(—(M + -+ Ap)a).

e If a <O then & =1I}_,1 = 1, whence P(min(Xy,...,X,) <a)=0.

We thus conclude that Fiinx,
of parameters A\; + - - - + Ag.

x,,) () has the cumulative distribution function of an exponential

.....

Remark: the cumulative distribution function on R characterizes the law of the random variable.
Indeed, it assigns probabilities to (a,b] = Fx (b) — Fx (a), and we saw that o{(a,b] | a < b} = B(R).

4.3 Ex 4.3

We have seen in the lecture that 7, : {0,1}N — {0,1} :: w = (w1, ...,wy) > w; is measurable, has
uniform law on {0,1} and that {m;};en for a countable set of i.i.d random variables. We also saw
that X : {0,1}N — [0,1] s w = (w1,...,wp) — >_ne w27 ™ has a uniform law on [0, 1]é. Finally,
we have seen that for F' a cumulative distribution function, defining G(t) = inf({z : F(x) > t})
and using U ~ Uniform([0, 1]), the random variable G(U) then has F' as a c.d.f.

We basically have all the ingredients, except that we would need to have a countable copy of r.v.
distributed as F'. One way of proceeding would be to do a new countable product of measure spaces
with a product measure (I have not thought about feasibility, but it’s one approach). Another
approach is to just work on the space we are given, namely {0, 1}N. We partition (actually just
countable disjoint subsets are needed) N into a countable disjoint union of sets. For example we
could play with the primes:

o Ir={2"|i>1}
o I3={3"|i>1}

e Iy ={5"|i>1} and so forth ...
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For each of these sets, and since all of the m; with i € I}, are i.i.d, we repeat the uniform image law
construction above # and compose with G. We are intuitively done, but still need the following
to conclude:

Independent Grouping Theorem

Let (w;)ier be independent sigma algebras indexed by any set I. Let (I;);es be a partition of I,
ie. I =Ujesl;. Then {o({Uo;,i € I;}) | j € J} form a set of independent sigma algebras indexed
by J. O

4.4 Ex 4.4
We recall that

limsup A,, = ﬂ (U Ak> = {w | 3 an infinity of n withw € A, }

n—N

n=1 \k=n

and

limnf A, = U (ﬂ Ak> = {w| I n with w € Ay for all k > n}.

n=1 \k=n

It’s sufficient to show that 1 — P(limsup,,_,n 4r) = 0.

We calculate:

1 —P(limsup 4,,) = P((limsup A,)°)
n— oo n— oo
= P(liminf Af)

n—oo
= lim P(N{2, A%)
n—oo

: : N c
Jm (lim P(-, A7)
. . N c
Jim ( lim T ,P(A3))

lim ( lim I, 1 — P(Ayg))

n—oo N—oo

IE 3

INS

lim TI32,, exp(—P(Ag))

n— oo

=0.

We have used independence for #, and the fact that (by convexity of the exponential) 142 < exp(x)
for all z € R in { (and taking © = —P(Ag). The final equality just comes from the fact that for
fixed k, the expression after the limit is always zero. [

4.5 Ex 4.5

We somehow want to use one of the Borel-Cantelli lemmas. The output resulting in a probability
of 1 (the monkey will end up typing...) we have a strong hint at Borel-Cantelli 2.

Note: in probability, an assertion is considered almost surely.
So let’s fabricate events that have positive probability, sum up to an infinite sum of probabilities

(a strong hint that we can take events with the same probability, finding a pattern) and are inde-
pendent.
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Here is an example of solution (there are plenty...).

All piano notes have equal probability p of being hit (a keys, ap = 1). P{X,, = k}) = p
for 1 < k < « and X,, the random key struck at time n. We have that (X,),en are ii.d.
The little prince has a finite length 8 of notes (a1, as,...,ag) with a; € {1,...,d} for all <. So
P ((Xn, Xn+1, ey XnJra,l) = (al, ey aﬁ)) = pﬁ > 0.

Consider the independent events Ay = {(Xis, ..., Xpgrs—1)) = (a1,...,ap)} for k € N, with
P(Ax) = p® > 0. Whence Y, -, P(Ax)
= 00, so by Borel-Cantelli 2, we have that P(limsup,,_, ., 4,) = 1. But we simply recall that

limsup A, = {N;2; Uz, A} = {w | w € A, for infinitely many n},
n—oo

whence the partition is played (countably) infinitely many times on our slicing up of time into
“intervals” of length 5. O

4.6 Ex 4.6

The underlying topic spanning the present exercise is the notion of a complete probability
space (or measure space, for that matter). A probability space (2, F,P) is complete if the re-
lation A € F,P(A) = 0,B C A implies that B € F. Fundamentally, a random variable on a
complete metric space that is modified on a (measurable) set of measure zero is still measurable.
Here, we skillfully manage not to touch the topic, but you should know this is where you should
look if you encounter such problems in the future.

First, suppose we have two random variables U and V. Then {U # V} is measurable. Indeed,

{U#Vi=UJ{U<an{V>ahu({U>qtn{V <q})) s

q€Q

is measurable!

For point (a), we now treat scalar multiplication (addition of a constant could be seen as a special
case of addition of random variables) Let X ~ Y (i.e. X =Y in L°, equivalently P(X =Y) = 1.
Then P(aX +b=aY +b) =P(X =Y) for all a (even a = 0) and b. Whence aX + b ~ aY + b.

Now suppose X ~ Y and Z ~ W. We want to show that X + Z ~ Y 4+ W, showing that the
equivalence class of the sum is well-defined. Indeed

{X+Y#Y+WIC{X #AY}IU{Z#W},
so taking probabilities on each side, we get P(—) < P(—)+P(—)=0. O

Now to point (b). Suppose X,, — X a.s. Then X is not necessarily measurable. However, we
show there is an X measurable such that X, — X as.

Denote by A := {w | lim,, o exists in RU{—00, 00} } is measurable. Indeed A = {w | limsup X,, =
liminf X, }. Indeed both random variables on the 1.h.s and r.h.s are measurable (Serie 1) and A is
then the complement of a set of the form &.

Setting X = (lim X,,)-14+0-1 4¢, we have a measurable function for which X,, — X almost surely.
Of course, if the original function X is measurable, then X ~ X, as they will differ on a (mea-
surable) set of measure zero. This is easily seen by noticing that these two random variables are
equal except on the complement of the union of two sets of measure zero (unicity of the limit in L)

I am not so happy with the formulation of the last assertion, in the following sense: we really
just want to see that this modified series X/, converges almost surely to the same element of L°,
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allowing us to now talk of convergence in the space of equivalence classes L°. This however should
be clear because the measurable set

B = {liminf X/, = limsup X, } N {liminf X,, = limsup X,, }

has measure one. Indeed

{liminf X} = limsup X, } 2 {limsup X,, = liminf X, }\ (U {X,, # X%}) ,
neN

the right hand side having measure one (and symmetrically). So we’re indeed talking about the
same element of LY.

4.7 Ex 4.7
o If X ~Y then P({|X — Y| >¢€}) =0forall ¢, s0 dgr(X,Y) = 0.

e Conversely, suppose that dxp(X,Y) =0 and X » Y. Then

{(X4£Y} = (ﬂ {|X—Y|<Tll}>c: U {|X—Y>Tll},

neN neN
SO )
0<PH{X#£Y} = 1i_>m TP({|X—Y| > }>
n—oo n
Then 3 ng, € such that for all n > ng : P ({|X -Y|> %}) > ¢ > 0. Taking % < €, we get

for 0 < o < L that P({|X —Y|>z}) > ¢ > 0. Whence dxr(X,Y) > 0. A contradiction.
Thus X ~ Y.

e We will have to prove that d(X,Y’) does not depend on the representants X and Y in the
equivalence classes of LY. First we prove symmetry and the triangle inequality on random
variables, then show the distance function is well-defined on equivalent classes.

e For X and Y random variables, dxp(X,Y) = dxr(Y, X) is immediate.
e For X,Y,Z (R-valued) random variables, we have | X — Y| < |X — Z| 4+ |Z — X| so

PH{IX —Y|>er+e}) <PH{IX-Z|>atU{lY —Z| > e})

<
SP{IX = Z|>ea}) +P{lY - Z| > e2}).
If the first element after the last inequality is < €; and the second < €3, then P({|X — Y| >

€1+ €2}) < €1 + €. In other words, by taking infimums, we read dxp(X,Y) < dxp(X,Z) <
dxr(2,Y).

e We now have all elements in our hands to show that dg r is well defined on L, thys concludigg
our proof that the Ky Fan metric is indeed a metric on L°. Indeed, taking X ~ X andY ~ Y,
we compute a classical triangular + inverse triangular argument.

|d(X,Y) —d(X, V)| < |d(X,Y) —d(X,Y)| + |d(X,Y) —d(X,Y)]
<d(Y,Y)+d(X,X)
=0.

4.8 Ex 4.8 - Challenge

No solution provided. Your solutions are welcome!
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5 Solutions - Sheet 5

5.1 Ex 5.1
We shall use the following:

Theorem. Let X,, and X be random variables. Then X, P Xx if and only if for every subsequence

a.s.

X, of X, there is a further subsequence Xnkl such that Xnkl = X.

It will be used several times in the sequel.

e We consider (X,, +Y,,)n>0. Take any subsequence ng. Then 3 ny, such that Xnkl — X a.s.
From this subsequence one can extract a further sequence ny, ~such that Yo, —Y as

But then X, ~— X as. as well. Hence (X +Y) — X +Y as. We conclude that

1

Xo+Y, DX +Y.

nkl?n

e The exact same argument gives us that X,, Y, P xv.
e We also need Y # 0 a.s. We again use the same argument.

e The same argument is used again. Here, the continuity of g guarantees that the subsequences
(and subsubsequences) of (¢(Xy, x>0 still converge almost surely to g(X).

5.2 Ex 5.2
Consider (2, F,P) = ([0,1],B([0,1]), A) with A the Lebesgue measure.
Define a sequence of indicator functions in the following way:

o X1 =1

© X2 =Ty Xo =Ly

[ ] X4 - ]1[07%],)(5 - 1[%7%]7)(6 == ]1[%,1]7

e ...

o X(n;l)n_"_l = ]1[0 L], ce ,Xn,(n2+1) = ]1[1_%,1]7

n

Each random variable Y on the n'" line satisfies P(|Y — 0| > €) = 1 for any ¢ < 1. But then

X, 5 070,1]- We have X, - 0[g 1] almost surely. However (one know that every sequence converges
in probability has a subsequence converging almost surely to the same random variable) we have,
extracting the first random variable of each line that:

(X(k;l)k+1)k21 — 0[071], a.s.
5.3 Ex 5.3
Notice that Z € S = ZlacSforany Ain F. Z€ S = |Z| € S and so |Z|1{jz5¢ € S.

Now from
|Z| > | Z|1{12>¢) > €lygiz)>e}

we deduce that E[|Z|] > €E[1{ z|>}]. This can be read as P({|Z| > €}) < LE[|Z]].
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Note: the last relation is called Markov’s inequality and is true for any Z € L.

Let’s suppose €, | dxp(X,Y) :=inf{e > 0| P(|JX — Y| > €) < €}. Suppose /E[|X — Y] < ¢ for
some €p. Then

1 1
PUIX =Y >e}) < —E[[X — Y]] = —j < <o,
€0 €0
whence dxp(X,Y) < €.
We conclude by taking €, | \/E[|X —Y]].

54 Ex 5.4

X =3,_ 1y But P{k}) = L for all k € {1,--- ,n} and since X is a simple random variable
(a step function, if you prefer), we have by definition that E[X] = >"}_, X (k). O

5.5 Ex 5.5

A few words before tackling this exercise. It certainly was very confusing to me, just to put you
at ease. There are several concepts that might puzzle you.

First of all, you know the definition of V = (L',|| - ||1) from measure theory. You know that
this vector space is a Banach space and that S, the set of all step functions, is dense in V. You
also know (obviously) that L' & LY (at least for most probability spaces: think of Q with finite
cardinality as a counter-example).

You also know from functional analysis that two completions of a normed vector space are isomor-
phic.

Here, we are doing something different. You are now asked to forget about the measure-theoretic
definition of L', and only remember ||L;|| as a norm on S. The present exercise is meant to show
that IF S, can be completed in (L°,dxr) (a subset of which is then a normed vector space) by
means of a continuous injection into the metric space (L, dxr) , then this completion is unique.
The course shows this can be done. Your knowledge from measure theory (the construction of the
Lebesgue integral) shows that our construction coincides with what you have learnt in measure
theory, because convergence in L! in the usual sense implies convergence in probability (and thus
S is indeed continuously injected into L° endowed with the Ky-Fan metric.

Suppose now that S C L', L C L°, with (L',||-||) and (L, || - ||z) completions (as normed spaces)
of (S8,]|-||z1) in L°. Notice we are slightly sloppy, as S is injected continuously into L° by two
isometries i1 : S — L' and iy : S — L. It might also confuse you that L' is used as a norm on S
as well as on its image by 71, but all shall be clear from the context.

Claim: L' = L and || - |2 = || - Iz

Proof. Take X € L. Then, since L is a completion of S, there is a sequence X,, — X in L (i.e.
|| X, —X||;) — 0). Teh sequence X,, is then also Cauchy in L' since || X, — X, || 21 = || X0 — X ||,
so it converges in L' to some X’ € L°. But since the identity maps are continuous, X,, — X in
probability and X,, — X’ in probability as well (the Ky Fan metric models convergence in proba-
bility!). Hence X = X’. So L C L'. Symmetrically, this argument yields L' C L. We have shown
that L' = L.

The second claim follows immediately from continuity of norms:

X[ = Tim E[Xa]) = [|X]Iz.
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Lt L
where X,, > X —= X, > X.

5.6 Ex 5.6 - Challenge

No solution provided. Your solutions are welcome!
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6 Solutions - Sheet 6

6.1 Ex6.1
First note that Zn>1 =€ < o0, since 1 +e>1. X = Z _1nlx—p, so by monotone conver-
gence a
k
E[X] = lim E[;n]l{x n)
= Z P{X =n})
= Z Z ({X =n})
=> > P{X =n})
i=1 n=1t
=) P{x>id}) O
i>1
6.2 Ex6.2

We recall that the Ky Fan metric models convergence in probability, i.e.

dgp(XnY) 50 <= X, 5V
Thus what we have to prove is that our present metric models convergence in probability.

Claim 1: d;o(X,Y) := E[|X — Y| A 1] is a metric.

Proof. Symmetry is immediate. Obviously, do(X,Y) > 0. Thendpo(X,Y) =0 < |X-Y|Al =
0a.s. <= |X — Y| =0 a.s., which proves we are not considering a pseudometric.

Now to the triangle inequality. We have that
dpo(X,Y) =E[|X —Z+ Z—Y|A1]
<E[X-ZIAN1+|Z-Y]|A]]
=dpo(X,2)+dpe(Z,Y),
where in the first inequality we have used that (X —Z)+ (Z -Y)|A1< (| X = Z|+|Z-Y|)A1 <

IX —Z|AN1+]Z-Y|A1
O

Claim 2: E[|X, — X|A1] — 0 < X, > X.
n—oo

Proof. “ = 7. If e € (0,1], we have that € - P({|X,, — X| > €}) < E[|X, — X| A 1] = 0. So
n—oo
P{|X, —X|>¢€¢} — 0ifee(0,1] (and a posteriori for all ¢).
n—oo
e E“Xn - Xl A 1] < E[(an - Xl A 1) : ]l{\anX\Se}] + EHXn - X| A 1) . ﬂ{an7X|>e}]- The

first term is smaller than €, the second smaller or equal to P({|X,, — X| < €}), which goes to zero
as n goes to infinity. We are done. O
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6.3 Ex 6.3

For part (a), recall that a singleton X € L' is uniformly integrable. So

PHIX[>t}) =t E[lyx>4]
< B[ X[1gx|>4}]
t—o0

— 0,

using uniform integrability for the limit.

In exercise (b), we suppose w.l.o.g. that X > 0 and calculate:

o0
E[X] <E | j-Lixey-15)
=1

= lim Z] PHX <j}) -PHX <j—1}))

N—o00
N—-1
= lim_ Zy PH{X <j}) - ]Z::o i+1)-PEX <4}
N-1
= Jim | N-P{X <N}) - 7:ZOP{Xq}
N—-1
= lim ([N-N-PUX>NpH+ > PUX>j}-N
N—o0 0
iz
N-1
< 1l LjTie
_Ngnoo,zc J
7=0
< 00,

where for the second last inequality we introduced ¢ = sup;>ot'*¢- P({X > t}) and the fact that
by hypothesis, N - P({X > N}) N 0.
—00

For point (c), we shall use the “Cauchy condensation test”: let a, | 0, then

Zan <00 = ZQ"agn < o0.
Take P({|X| = k}) = oalh) (where ¢ is just scaled so that P is a probability and > 1).

2"¢c

E[X] Dokt ﬁg(k), but by Cauchy’s condensation criterion, we have that >, -, T logam ™

Y ons1 3z = 00. So E[X] = co.

However, P({X > k}) = Y72, P({X = j}) = 372, iy < Dok 77ieay- B using that
f L= f% and playing smartly with Riemann sums, we bound the last term in our calculation by

z?
for some constant ¢, whence k- P{X > k}) < — 0 0O

k locg(k) = klo g(k)
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6.4 Ex6.4

Let (X;);er a family of bounded random variables in L' (i.e. sup;¢; [|X;|| < 00). We must show
the following two assertions (known as uniform integrability) are equivalent (note the second point
assertion implies L!-boundedness):

1.Ve>030>0: AecF,P(A) >0 = Viel, E[|X;|14] <€
2. limg ;o0 sup;er E[|Xi[ 1 x,54q/] = 0.

2= 1: Let € > 0. Choose a > 0 large enough so that

N

sup E[1{|x,>a}] <
il
Then for all ¢ € I and A € F we have:

E[|Xi14] <E[|Xs|1angx,<a}] + E[Xil1{ix,>a1]
<aP(A) + %

By choosing § = 5, we are done.  [J
1 = 2: Let ¢ = sup,c; E[|X;|]. By Markov’s inequality, for any a > 0, we have

Viel : PH{|X;|>a}) <

ISHIe)

Let € > 0 and choose § > 0 such that the left hand side of (1) is verified. Then if a is large enough
so that £ < § we get:
Viel: E[|Xi|]l{\Xi\>a}] <€,

so we are done! [

6.5 Ex6.5

A proof can be found in [1], namely this is the content of Theorem 4.6.3. In the proof of the
theorem, a few references are made to other results, which are all referenced in the book (even
though one result is left as an exercise). You might wish to skip this exercise on a first reading
and come back to it later, or at least after having solved the other exercises of the exercise sheet.

6.6 Ex 6.6

Note that if sup,c; ||X;||zr < oo for p > 1, then we satisfy the assumptions of this theorem (from
(b) to (a)). We will prove that (b) implies (a) under weaker conditions on ¢: we drop convexity
but retain all other conditions. We use the characterization of uniform integrability from 6.4.

First: for all € > 0 there is an z. such that x > z. = = < ep(x). Hence, by denoting M :=
sup;e s E[p(|Xi|)] < oo

Sup E[|Xillqx, 23] <€ sup Elp(1XiD1(x:1>2.3]

< GSH?E[w(IXiI)] =eM.
1€

Whence lim, 00 E[| X;|1{x,|>a}] = 0. That is, {Xi}ier are ui. 0O
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7 Solutions - Sheet 7

71 Ex 7.1

We just show that A IS the Lebesgue measure (denoted here by p). Then in particular A([a,b]) =
u([a, b)) for —oo < a,b < oco.

Proof. Let A € B(R), then

AA) =Y A(AN[n,n+1))

nezZ

= S uAN [ +1))

nezZ

> AN [n,n+1)

nezZ
= u(4),

since | |,cz[n,n+1) =R. O

7.2 Ex 7.2

See also Section 14 for an alternative solution.

Suppose first that two finite measures p and v of equal mass on a space (€,G) coincide on a
pi-system II C G.
Claim: p = v on o(II).
Proof. We prove that G’ = {C € G | u(C) = v(C)} is a sigma-algebra.
o u()=0=v(0),s0 0 eg.
o If C' € G’ then pu(C°) = pu(2) — u(C) =v(Q) —v(C) = v(C°).

e Suppose (C;)ien € GN and p(C;) = v(C;) for all i and the C; be disjoint. Then p(U,enC;) =
ZieN M(Ci) = ZieN V(Ci) = V('—'neNCi)- So UienC; € g'.
G’ is thus a sigma-algebra. O

Now back to our exercise. Notice that for all n, A, NII is a pi-system on A, and A, NII C II.
Furthermore we know that u(A4,) = v(A,) for all n as well. We use the following fact (exercise for
you: prove it):

ola(ANT) = Ano(ID).

In words: “the sigma-algebra of the trace is the trace of the sigma-algebra”.

Let’s suppose o(II) = G. Then o|s(A; NII) = Ano(Il) = ANG. We recall that A; NI is a
pi-system on A;. So from the claim above: p|a,ng = v|a,ng for each i € N.

We're in a position to conclude. We suppose w.l.0.g. (see below for an explanation) that A; C A;11
for all . Taking B € G,

w(B) = pu(Uien (BN A;))
= nhﬁrr;o w(BNA;)

= lim v(BN4;)
n— oo
= v(B).
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The “without loss of generality” assumption remains to be seen. Again without loss of generality
(why?), this boils down to showing that if A; and A; are two elements of the sequence that covers
T, then p and v coincide on G|a,u4,. Taking £ € G we thus have that u(ENA;) = v(E£N A;) and
w(ENA;)=v(ENA;). We wish to prove that

We write A; UA; = A;UD I_IA;-, where D = A; N A;, A; = A;\D and A;- = A;\D. We unfold the
definitions to conclude:
u(EN(A; U A;j) (ENA)U(END)U(ENA)))
ENA)+u(END)+pu(ENA;)
ENA;NA)+p(ENDNA)+p(ENA;NA)

’

(
(
(
(ENA;NA)+v(ENDNA)+v(ENA;NA;))
(
(
(

I
I
I
v

? J
’

ENA)+v(END)+v(ENA)
v((ENA)U(END)U(ENA))
v Eﬂ(A,UAJ))

14

Note that the last step (w.l.o.g.) does not constitute the real heart of the argument, but rather a
baroque variation. The important concept is really about working locally and going to the limit
(the whole space). O

7.3 Ex 7.3

Solution 1: measure-theoretic spirit

By scaling we may assume that ¢« = 0 and b = 1 so we are working on the probability space
([0,1], B([0,1]), dx), where B is the Borel o-algebra and da denotes the Lebesgue measure. Define

the simple functions
= k k
i () ()
k=0 wom

which are constant on every interval of the form I = {%, w) Notice first that we have the

n
telescoping sum

/019"<f>dx—§“(f (S5 -7 (%) i—ki_:o (r(5H) -7 (%)) = s - 1o

Notice then that when x € I, then by the mean value theorem

for some ¢ € I. In particular [z — ¢| < £ and we have

lgn(@) = f'(2)] = |f'(€) = f'(@)] < w(l€ —z]) w(1/n)

where w is the modulus of continuity (see Prop. A.7. in the lecture notes if needed) of the uniformly
continuous function f’ (a continuous function on a compact interval is uniformly continuous).
Notice that the right hand side in the inequality does not depend on the interval I, and thus
in fact we see that g, — f’ in L®([0,1]). As L™ is continuously embedded in L', we also have
gn — f"in L1([0,1]) and in particular

n— oo

[ @ s =t [ g.@)dz = 1)~ 10,
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Solution 2: Riemann sums spirit

Recall that a continuous function f (here f’) is Riemann integrable. Split the interval [a,b] into
intervals of length b*T“, write a telescopic sum and use the mean value theorem:

f(b)_f(a):ni:l (f <a+(b—a)k;l|—1> _f(a—i—(b—a)?]z))

The last term can be identified as a Riemann sum. As n goes to infinity, it thus converges to
f; f'(z)dz, f" being continuous.

74 Ex 7.4

Let f : R — R be convex. We set out to prove Jensen’s inequality. We claim that for s < ¢t < u

the relation
f@) = f(s) _ fw) = f(s) < f(u) — f(t)

t—s - U— S u—t

holds. Here is a graphical proof, where m; < mgy < mg translates instantaneously into our desired
relation. s, t and w are of course the x-coordinates of the three intersection points of the three lines.

2
Slop

As a consequence, fixing a point x, the following limits

flx+h) - fz)

R, = lim

h—0t h
and
N (R ()
h—0— h

exist, where R and L stand for left and right. Of course, L, < R, and

L, = R, <= f differentiable at x.
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As a consequence, we immediately have continuity of f (these reasonings lead to deduce interesting
properties of differentiability for convex functions... think about playing around with reasonings
such as “how many points of non-differentiability are there”... similar reasonings as those applied
to the cumulative distribution function for instance).

Now consider the line of slope m € [L,, R;] at the point (zg,¢(x¢) on the graph of . Then
o(x) > ax + b for all z in R.

We have o(X) > aX +b. Suppose X € L. Consider the line above at the point (E[X], aE[X]+b),
noting that aE[X] 4+ b = ©(E[X]). Then E[p(X)] > aE[X] + b = ¢(E[X]) 0.

Now to the last part of the exercise. Suppose E[X ] < co and E[X_] < co. The case E[X.] = —o0
and E[X_] < oo is treated similarly. 3 cases have to be analyzed:

+00
p(o0) =9 0
—00.
,
e Suppose p(00) = 00. P(E[X]) = p(o0) = 0o < E[p(X)]. But then there is an @ > 0 and a b
such that p(X) > aX 4+ b. So E[p(X)] > E[aX + b] = c0. OK.

)
e Suppose p(c0) = ¢ € R. Then ¢ = p(E[X]) < E[p(X)]. But then there is a line y = ¢ such
that ¢(x) > ¢, whence p(X) > 0 and so E[¢(X)] > ¢. OK.

e Suppose @(co) = —oo. But then there is nothing to prove (—oco < anything), except that
E[o(X)] is well defined. We leave these details for the interested reader to solve. O

7.5 Ex 7.5
See also Section 14 for an alternative solution. Grateful thanks to Wei Jiaye for reviewing and

typing my solution.

I'll prove a slightly more general statement: let f : (X, u) — R™, where f = (f;), fori=1,...,n
and f; € L'(p) for all i = 1,...,n. By definition,

/fdu = (/X fidﬂ>j_1 eR™

Theorem. [+ ||f]| is measurable and

H / fduHS [ 15

Proof. Every norm of R™ is continuous, thus ||-|| is measurable, so || f|| is measurable. Let s : X —
R™ be a (multi-dimensional) step function defined as

N
s = Z sila,, si € R", A; C X disjoint, measurable sets for 1 < i < N.
i=1

Then we have

N
SduH <3 silluta = [ S lsltadie = [ lsldn,
n > »> .

taking into consideration that s;u(A;) € R™. O

slu
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Since all norms in R™ are equivalent(they always are on finite-dimensional vector spaces), there
exists C' € (0,00) such that ||v|| < C'maxi<i<p |v5],Vv € R". Let’s choose ¢ > 0, for s : X — R

with
13
— 3. < =
lrgggxn/XI(f 8)ildp < 50"
hence
€
_ < —_3), < Z
H/}((f s)duH_clrgggn /X(f s)@u]_ :
and

€
< — . < =
/X||f SHdM_ClIg?an/ [(f S)z\dﬂ_2~

| ran] < o= ov] ] o]
/. sl

+/X||sff||du+/xllf||du
§s+/XHf||du~

Whence for all € > 0,

IN

IN

2
¢
2

7.6 Ex 7.6

This exercise/type of reasoning will be important in stochastic calculus in the context of Girsanov’s
theorem, a procedure by which one is able (among other things) to eliminate the drift of certain
random processes.

What is meant here is that Q(A) = E[e%X_é]lA] for A € F (on a space (2, F,P)).

Let B € B(R), then

a2

QX € B}) =E[e>* 7 1x(p)]
1 _z2 1
= —e 2
/B V2T
:/ L ey,
BV 21 '

But this corresponds to the distribution of a A'(0,1) random variable. The second equality should
be seen conceptually as a composition of functions, namely

2 X1y 1 gy (W) = (z - e271p(z)) 0 (w — X (w)).
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8 Solutions - Sheet 8
8.1 Ex 8.1

Note that our problem is symmetric in z and .

Our strategy (classical proof) is the following:
(a) Prove this is true for f = 14, with A = Ay X Ag, A1 € Gy, Az € Gs.
(b) Prove this is true for f = 14, with A € G; ® Gs.

(¢) Prove this is true for any f that is G; ® Go-measurable (f : G; ® G2 — R).

(b) = (c): Any such f can be written as f = lim,,_,o 1 fn, where the f, are step functions
of the form f, = Zf‘:(q) a;ilan for A} € Gy ® Go. But then y — f(z,y) is a pointwise limit of
measurable functions y —, (z,y), for n > 1. Thus y — f(x,y) is measurable.

(a) = (b): Let D={A € G1®Gs| yr— La(z,y) is measurable}. If we prove that D is is a
A-system (which contains the 7-system of cylinder sets), then by Dynkin’s A\-7 theorem, we obtain
that D = G; ® Go. The (standard) proof goes as follows:

e () € D is obvious since 1 — 1 is a measurable function,
o Let AcD. 1gc =1— 14(x,y) is measurable in y, so A¢ € D,

o Let Ay C Ay C...,then 1y, a,3(2,y) =3 ,5; 1a, (7, y). A pointwise limit of measurable
functions being measurable, we conclude that U,>1A4,, € D.

Proof of (a): y+— La,ga,(z,y) = La, (x)1a,(y) is G-measurable for a fixed x, since 1 4, (y) is equal
tolify € As and to 0 if y ¢ A,.

8.2 Ex 8.2

where in the second equality we used that F'(0) = 0 and in the second last Fubini’s theorem on
P ® u (positive version, since F’(u) > 0).

The two particular cases are immediate.
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8.3 Ex 8.3

X, o (2, F,v) = R, where v is o-finite, n € N. We work on (Q x N,v ® p). Our function is
F:QxN—=R:(w,n)— X, (w).

By Fubini, we have the equivalence
/ [Flv@u<0 < / / | X (w)] v(dw)dp < oo.
QxN N JQ

The right-hand side is nothing but ) .\ E[|X,|], which by assumption is < co. And then, by

Fubini again:
d = / X, (w) dudv = E lz X,
neN 2 JneN neN

. O

8.4 Ex 84

For an enlightening counter-example, see 14.

For a technically more involved but much less intuitive counter-example, download the PDF file
called “nofub.pdf” at the following index: https://math.jhu.edu/~jmb/note, an example on
John Michael Boardman’s webpage at John Hopkins University. A “post-mortem” on what actually
happened in this counter-example (an explanation) is offered.

8.5 Ex 8.5

This is the content of Theorems 9.2.1 and Corollary 9.2.3 (pp.108-111) of [4]. The fact I am not
writing the proof here should not lead you to think this is not important. This result and method
of proof are essential in probability theory, so please do tackle this exercise!

8.6 Ex 8.6 - Challenge

No solution provided. Your solutions are welcome!
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9 Solutions - Sheet 9

9.1 Ex 9.1
Possible solution: Let X ~ U ((—1, 1)) a uniform random variable and Y := X2.

1 W11 1
EIX]=0; E[Y] = [, v*} du= [?}71 =L EXY]= [ vldu=0.

As a consequence o(X,Y) = E[XY] — E[X]-E[Y] =0. But X and Y are not independent.

To see this, consider for example
P({X €10,0.5),Y € [0,0.5)}) = P({X € [0,0.5)}) =0.25

and
P({X €[0,0.5)}) - P({Y €[0,05)}) =

N
Sl
N
[N}
S

9.2 Ex 9.2

That independence yields the stated property is immediate. The converse is a usual Dynkin
argument: two probability measures coinciding on a generating system are equal. In this case
the measurable space is R™ together with it’s Borel sigma-algebra. The probability measure on
(R™, B(R™)) is the law of (X71,...,X,), in other words the push-forward Q on R™ of the probability
measure P by (X7,...,X,), denoted (X7, ..., X,).P. The stated property just says that Q is the
product measure on R™ of (X1).P,...,(X,)«P. But by Fubini, this is equivalent to X1,...,X,
being independent.

9.3 Ex 9.3
(a) E[E[X|F]] = E[E[X|G]1o] = E[XTo] = E[X].

(c) (X € L'). We have that E[X14] = E[X14] for all A € G. X being G-measurable, we conclude
that E[X|G] = X by unicity of the conditional expectation.

(e) E[E[X|G]14] = E[X14] > 0 for all A € G. Consider B = {w | E[X|G] < 0}. Then
E[E[X|G] 1] = 0, since this quantity is both > 0 and < 0. But then E[X|G] - 1p = 0, a.s.
Whence E[X|G] > 0, a.s.

(f) X —Y > 0s0 E[X —Y|G] > 0 by point (e). As a consequence E[X|G] > E[Y|F].

(d) By using that X is independent of G (meaning that (X) and G are independent under P), we
have that E[X14] = E[X] - E[14] = E[E[X]14]. As a consequence, E[X|G] = E[X].

(b) Since H C G,we have (by (c), E[X|G] being G-measurable) that E[E[X|H]|G] = E[X|H]. Now
for A € H, using G-measurability of E[X|G] and that H C G, we have

E[E[X|G]|14] = E[X14] = E[E[X|H]14].
As a consequence, E[E[X|G]|H] = E[X|H].

(g) We use Jensen’s inequality, which will be proven in exercise 10.1. For ¢(z) = |z| (convex), we

have
E[X.[0] — E[X|G]| = E[(X,, — X) | 6| <7 E[IX,, — X]| 6.

1
Taking expectations and letting n — oo, we get that E[X,,|F] L E[X|G].
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94 Ex 94

I cannot stress how important this small theorem/lemma is to probability theory, with several
applications in this lecture. Let’s call it the Independent Conditioning Theorem. This
theorem comes up periodically in the theory of stochastic analysis, Markov chains or processes,
among others. The proof can be found on page 150 of [4].

9.5 Ex 9.5

Part (a): we first prove the following:

Claim: If 77 and F» are independent sigma-algebras, and X is an integrable random variable
independent of F5, then the following holds:

E[X|F, V Fy] = E[X|F).

Phrased in plain words, you could read this statement as “adding an independent sigma-algebra
gives no additional information on the expected value of X”. Example zero of this property is
when F; = {0, Q}, in which case this reads E[X|F2] = E[X].

In our present exercise we have
U(STH Sn+la . ) = O'(Sna Xn+17 Xn+2a . ) = U(Snv U(X7L+17 XTL17 . ))

using the fact that X, 41 = Snik — Sntk—1. Sn and (X411, Xpnt2,...) are independent, and X,
is independent of o(X;,41,...), so the above-stated claim proves point (a).

Proof. Let A € Fi, B € F5, then X1 4 and 1p are independent, whence

E[X1415] = E[X14]E[15]
= E[E[X|F1]14]E[15]
= E[E[X|F1]1al5].

We want to go from 1anp, with A € F1, B € F5 to 1¢ with C € F; V Fy. We use Dynkin’s IT — A
Theorem. Define Il := {ANB| A€ Fy,B € F}. Then II is a II-system that generates F; V Fa
(take A = Q or B = (), alternatively). We now claim that

A= {C c F1V Fs ‘ E[X 10] 10] = E[E[X|]:1] ]lc]}
is a A-system, which would complete our proof. We thus set out to prove this claim:
e 0 € Aisclear: take A= B =Q

o (ANDB)° = (A°NB°)U(A°NB)U(ANB°). Whence by linearity of the expectation we have
that (AN B)° € A.

o If (A; N B;)ien are disjoint, 4; N B; € A, then by dominated convergence we have that
I_IieN(Ai N Bl) c A.

We are done!
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Part (b): Let A € 0(S,), then let B € B(R™) such that A = (X; +...+ X,,)"1(B). We have that
E[X,;1.4] :/]lB(X1+...+Xn)-Xi dP
:/13(x1+...+xn)~xidP
:/]lB(acl—i-...—l—xn) cx; d(X,P)®",

which is constant in ¢ by Fubini! Whence we have E[X;14] = E[%]lA] for all 4, Sr—f is o(Sy)-
measurable, so E[X;[S,] = 2=. O
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10 Solutions - Sheet 10
10.1 Ex 10.1

The present proofs for Jensen’s and Holder’s inequalities are based on Jason Swanson’s notes, found
at http://math.swansonsite.com/, under the tab “Other documents”, “Conditional expectation
for professionals”. Other interesting lecture notes/documents are also available.

We recall, for Jensen’s inequality, that both X and ¢(X) have to be integrable. Furthermore, for
¢ : R — R a convex function, the left-hand derivative

Ly i 2L — (e — h)
¢_(c) =lim —

exists for all ¢ and

for all z and c.

Proof. (of Jensen’s inequality). Let Z = (X —E[X|G])¢_(E[X|G]), so that o(X)—@(E[X|G])—Z >
0, a.s. This implies

0 < E[(o(X) — ¢(E[X|G]) — 2)IG] = E[p(X)|F] - »(E[X|F]) - E[Z]G).
It therefore suffices to show that E[Z|G] = 0. To see this, we calculate
E[Z|G] = E[(X — E[X|G])»_ (E[X|G])I]]
= ¢_(E[X|G)E[X — E[X|)|]

= ¢ (E[X|G))(E[X|g] - E[E[X|G]|F])
=0,

and we are done. O

We shall require a very basic fact of measure theory for the proof of Holder’s inquality. Recall
that if U and V are L!-integrable on a space (2, H,P) then:

o E[UL4] <E[VIAIVA€eH=U<V, as.
o E[UL4] =E[VI4A|VAcH=U=V, as.
The reader for whom this fact is not obvious should try and prove it.

Proof. (of Hélder’s inequality). We first consider conjugate exponents p,q € (1,00). Note that
by the ordinary Holder inequality, XY is integrable, so that E[|XY||G] is well defined. Let U =

(E[| X P |g])% and V = (E[|Y]? |g])% Note that both U and V are G-measurable. Observe that

E[| X[PL{y—oy] = E[E[| X [P L{r—0}|G]]
E[1qv—oE[IX[?|G]]
E
0.

[Liy=0yU"]

Hence, |X|P1{y—¢; = 0 a.s., which implies

E[IXY]|9]1{y—0} = E[[XY[L{y—0}|G] = 0.
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Similarly, E[|XY||G]1{y—¢y = 0. It therefore suffices to show that E[|XY]||G]ly < UV, where
H ={U >0,V > 0}. For this, we use the result recalled above to prove that
E[[XY] |9]
uv

Note that the left-hand-side is defined to be zero on H¢. Let A € G be arbitrary and define
G=HnNA. Then

1g <1a.s.

E[lXY]|d]

XY
E[
uv

el ledg}
7

e e
el DP ()
EE{EAEZQ ]) (E[EDaymﬂa}>q

E

1 ]lA]:E

IN

E

IN

[1g]7E[lg]s
[1g]
[Lal.

Applying one more time the result recalled above, we conclude.

In the case where p =1 and ¢ = oo then | XY| < | X|||Y], so
EXYIG] < Y| E[X|I9] = E[[[Y ]| |FIE[X]G].

We shall now derive Minkowski’s inequality from Hoélder’s!
Proof. (of Minkowski’s inequality). % + % =1, with p,q € [1, 00].
lu+o” < (Ju] + [0])? < 27 max /([ul?, [0]") < 2°([ul” + |v[*),
so in particular if u,v € £P then |u + v|P € L! or if you prefer u + v € £LP. Consider
-+ 0P = [u+ o] Ju+ o< Jul - fut oL o] Jut oL
Taking expectations yields
Ellu+v[?|G] < Elful - [u+ o["~1G] + E[Jo] - |u + v[P~1|G].
o If p=1, |u+v| <|ul+ |v|, we are done.
o If p=o0, [Ju+v| < lull, + ||v|l, we are done.

e If p € (1,00), we use Holder’s inequality, conditional version:

1

Ellu+v[|g] < E[|ul?|G)? Ellu+v|"~V9|g]s + E[Jo[?|g]» E[(u + v)P~19|g]>.
®

Note that (p —1)g = (p — 1)(;%7) = ¢, a miracle has happened! Now divide on both sides
by & (if & =0, we have 0 <0, O.K.). Then

Elju+v|?|G)' "7 < E[[ul?|G]> + E[[v]?|G]>.
1

Since 1 — E =, We are done.
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10.2 Ex 10.2

The function z — P is convex for p > 1. we thus use Jensen’s inequality (proven in 10.1). This
reads
[E[X|G]I" < E[IX["|G]  as.

Taking expectations reads E[|E[X]|G]|P] < E[|X|?], or [|[E[X|G],|| < || X]|, when taking taking the

power %. O]

10.3 Ex 10.3

Let A€ G. Then
E[L4(X —E[X[G])] = E[14X] — E[L4E[X|G]] =

2
by the very definition of conditional expectation. Suppose Z € L2(, G, P), then we have Z,, 57z ,
where Z,, is a sequence of step functions of the form Z,, = ?:’Cl a;1an with A7 € G. From this,
we have

C.S.
[E[(Z = Z)(X —EX|G])]| < 12 = Zul o]l X — E[X[G]] .-
The first term on the r.h.s goes to zero as n goes to infinity. So for all Z € £2(Q,G,P) we have
that E[Z(X —E[X]G])] = 0, where both random variables in the product are in £2. In other words,
X — E[X]|G] € £2(9,G,P)*, whence E[X|G] = Projz(q g p)X, i-e. E[X|G] minimizes E[|X — Y]
among all Y € £? with Y a G—measurable function. O

A second approach, which does not use the Hilbert space structure of £2 (namely (f|g) = E[fg]).
To this end, let Y be G-measurable. Then

E[lX - Y[’] = E[|X — E[X|g] + E[X|G] - Y|*]
= E[|X — E[X|G]* + [E[X|g] - Y]* + 2(X — E[X|G])(E[X|G] - Y)]
= E[|X — E[X|G]]’] + E[[E[X|G] — Y|*] + 2E[E[(X — E[X|G])(E[X|]] - Y)|F]]
= E[IX — E[X|G]]’] + E[[E[X|G] - Y|*] + 2E[(E[X|G] — Y)E[X — E[X|d]|G]]
= E[IX - E[X|G][*] + E[[E[X|G] - Y],

by the law of total expectation E[-] = E[E[-|G]] and since E[X — E[X|G]|G] = 0. Thus
E[|X —Y|*] > E[|X — E[X|G]’]
with equality if and only if E[X|G] =Y a.s. O

Important Note: You should come back to this exercise in your future study of Gaussian spaces
(for example in the context of linear regression theory), since in specific cases the conditional
expectation will coincide with a linear combination of Gaussian vectors spanning (meaning the
closure of the span) what is here denoted as £2(£,G,P).

104 Ex 10.4

This is an essential result in probability theory and a special case of conditioning for random
variables that possess a density function. You should try and give the proof and result an inter-
pretation. The full proof is the content of page 151 in [4].
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10.5 Ex 10.5

(a): We can proceed by direct computation:

1 122 1 5.,
Elexp(tX)] = | ——exp ~52 exp(tzr) de = exp P ),
R V2o

where we identified and used the fact that the density of N'(o?t, o) integrates to 1.

Alternatively, we can proceed by using 7.6. If X ~ N(0,02), then & ~ N(0,1). By 7.6, the
function exp (a— - —) defines a probability measure, which implies it integrates to one. Taking
a = to yields [ exp (tX ) dx =1, which implies that [, exp(tX) = exp( )

(b): The Chernoff bound is immediate (just an application of Markov’s inequality with ¢(x) =
exp(tz). So P({X > A}) < exp(—t}) exp(%cﬂ) A by (a). (—tA+ %02)/ = -At+to? =0 <
t= U—>‘2 As a consequence, # < exp(—%i—i). O

10.6 Ex 10.6

Take logs in order to make the law of large numbers (LLN) appear!

Y, = (szle) = log(V, Zlong
Note: to avoid log(0) = —oo, equivalently, consider the uniform distribution on (0, 1] or on (0, 1).
Anyway, we don’t worry, because p({0}) = 0. We have E[log(X})] = lim._q f: log(z) de = —1.
Whence by the LLN, log(Y;,) — "Z% 1, a.s. Consequently, (Hk 1Xk)% jans exp(—1), a.s. O

10.7 Ex 10.7

Let M € R. Then P({ > M}) = ®(M), where ® is the cumulative distribution function of a
N(0,1) random Varlable

({52 > 31)) = ElL g, . 33000]

= E[hnrr_l)ng > M}

< limsupE[l, s, ,]

n— oo vn<M

=d(M) <1,

where in the last equality particular care was required to unfold and use the following chain of
equivalences:

Iiy(w)=1 <= liminf&(w) >M <= Jk: inf \S/n,(w) >M = limianL{ >M}( w)=1.

n—o0o \/ﬁ n>k n n—oo

Now let (X;);en be a sequence of random variables. We claim that lim inf,,_, - X,, is measurable
with respect to the tail sigma-algebra N32 ;0 (Up>10(X5;,)). Indeed, for « € R:

{liminf X,, <z} = ﬂk>1( n>k {Xn <2}) € Nk>1Fk-
—

n—00
€Fn

—_—
EFk
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Whence, by Kolmogorov’s 0-1 law, and since ®(M) > 0, we have that P({liminf

—o0}) =1 for all M. Consequently,

lim inf & = —00 a.s.

n— 00 \/ﬁ

Sn
n—o0 ﬁ

and
lim sup & = —lim inf—& =400 a.s.
n—00 n n—00 \/ﬁ
(convergence of the liminf to —oo because — X1, — X5, ... have normal distribution and are inde-
pendent).
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11 Solutions - Sheet 11

11.1 Ex 11.1
Define F,, = 0(X;, ¢ > n) then F,,11 C F, for all n. Define

g3:ﬂ]:n

n>0

as the tail o-algebra.
By Kolmogorov’s theorem: 4 € G = P(4) € {0,1}.

Let’s start working in R and consider

limsup X,, = lim sup Xj.

n—00 N—=00 k>n

SUPg>, Xk 18 Fp,-measurable, for n > ng with ng fixed. As a consequence limsup X,, is Fp,-
measurable, for any ng € AN. Whence limsup X,, is G-measurable. Note that the exact same
procedure/proof applies to liminf X,.

For A € B(R) we define © := {w : lim X,, exists in A}. Then
© = {liminf X,, = limsup X, } N {limsup X,, € A} N {liminf X,, € A}.

The information provided by the last set is superfluous (already contained in the first two). But
so © € G, and we're in business for Kolmogorov’s tail theorem!

e (a) Just take A = R or A = R in the reasoning above. The next two points constitute an
adaptation of the reasoning above; we shall use © again as a name for the considered sets.

e (b) Notice that for A =R or A =R (not for any A, because of shifts),
O := { lim ZXk exists in A} = { lim Z X}, exists in A}
k=1

n—o00 n—00
k=ko

for any ko. The first set in the equality is in F; but the reformulated version is in Fj,. As a
consequence, © € Fy, for any kg € N. Thus © € G. We are done.

e (c) Notice that for ko fixed, & Efi;l X, =% 0. As a consequence, for A € B(R):

n—o00 N n—o00 N

1l L 1 L
© ::{ lim fI;Xk exists in A} :{ lim szk X, exists in A}.
= =ko

The right-hand side is an element of Fj,, whence © € Fy, for all kg € N. Thus © € G. We
are done.

11.2 Ex 11.2

Preliminary remarks:

o for p > 1 we get E[ZOO ‘X"l} =3 L <,

n=1 np n=1 npP
e for p = 0, the series jumps constantly by —1 or +1, so divergence,

e remains the case 0 < p < 1. It’s not easy “just like that”. But we have an atomic bomb the
3 series theorem of Kolmogorov!
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We thus treat the last case, where 0 < p < 1.
e Choose K =1, then o7 | P[|2z

npP

> 1] =0.

_ Xn . ¢ 00 _
oY, ="u 1{\%\31} = == thus )~ E[Y,] =0.
=0
2 2
e E[V, 2] = E[(X2)) = Bl — L But 3k <00 <= p> 1.

oo

So as a conclusion, >~ % converges a.s. if and only if p > % When it does not converge a.s.,

then {3°)_, 2 exists in A C R} (taking here A = R is in the tail o-algebra N1 0(Xk, k> n).

P

We conlude then that > .-, % converges nowhere, a.s. O

11.3 Ex 11.3
Point (a). Convention (notational): X ~ Law(X}).

oo

P{IX| > t}) dt

oo

PH{IX]| > t}) dt

oo = E[|X]

S— 5

IN

(]

P{IX] = n})

3
m
Z

P{IX] = n})

3
m
Z

where in the last inequality we used that the function ¢t — P({|X| > t}) is decreasing and in the last
equality that the X; are i.i.d. and have the same law as X. We also used exercise 8.2 in the first line.

By Borel-Cantelli I, P(limsup,, ,.,{|X»| > n}) = 1. In other wrods |X,| > n infinitely many

times. But S,, = w + % If S, = a € R, then % "Z3° 0. But this is not true as |%| >1

infinitely many times. A contradiction.

Point (b). Notation: X; = X;" — X, in the usual sense and S, = Y1 | X", S, == > X

n
Su _ Su By the law

(so we don’t exactly follow the usual convention for S;" and S, ). So 57" =n— oo
S.

of large numbers, ST; % E[X;] as n — co. Choose K > 0, then
S, 1
lim =% > lim —ZX,jIL{X:<K}
k=1

n—o00 M n—00 N

= E{XU{XKK}}

—%°E[X;'] (dominated convergence)
=0.

=

. St
Consequently, lim,, . =* = 00, a.s. O

11.4 Ex 11.4

(Note: by extension, I = (a,b) for all a,b € R, a <b).

F increasing: =z < y = F(x) < F(y). Suppose z( is a point of discontinuity, then ( < )

limy,, F(z) = F(z™) > F(z~) = lim,qs,, whence there is a number ¢,, € Q such that F(z7) <
H

g < F(z7). Let D = {x¢ € I | 2y a point of discontinuity of F'}. Then the map a: D — Q :: xg
z, is injective. Whence Card(D) < Card(Q), so D is finite or infinite countable.
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11.5 Ex 11.5

Sp = > p_y Xi. We have E[S2] = E[>_""_ | X?] > 1. In particular, since (X;)!, are independent,
X; #0.

Taking into account that terms with odd powers cancel out and the fact that |X;| < 1, we have
that

n

E[IS.[Y1=C5 > E[X7]-E[X]]+ ) E[X/]
1<i<j<n i=1

<ci Y EIXP)EX 4+ E[XE.

1<i<j<n i=1

We bound the first term:

Cy Y. EXJ]-EX]]<C; ) E[X7]-E[X]]

1<i<j<n 1<i,j<n

= CyE[S;]?
o 212
As a consequence, E[|S,|*] < (C5 + 1) -E[S2]*.
7
Now we have
1
PS> SEIS2) - (5]
a1 1
> — .~ - E[|S.]*
£ L s

using Paley-Zygmund for the first inequality. As a consequence P(|S2| > 1) > 4, whence P(|S2| >

35) = 55 (ie. taking e = 5¢).

11.6 Ex 11.6

No solution provided. If any of you solved this technical exercise cleanly, I would be glad if you
shared your solution with the class.
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12 Solutions - Sheet 12

12.1 Ex 12.1

Suppose (X, ), is not tight, then there is an € > 0 such that for all K > 0: P({|X,,| > K}) > € for
some n. Whence there exists (X,,, Jxen such that P({|X,,| > K}) > € (notice k is varying).

We now claim that (X, ) has no subsequence that converges in law. Indeed, ¥V A > 0 and for any
subsequence X, P({\Xnkj| > A}) > e for j large enough.

But then by the Portmanteau theorem, if X, = — X, we would have that P({|X]| > A}) > ¢, for all
A > 0. But this is absurd: for any random variable X : Q@ — R, we have limy_,oc P({|X| > A}) =0
(since Npen{|X| > n} =0).

Important comment (for your future study of probability theory):

In the context of convergence in law, let S be a polish space (separable complete metric space).

Let P(S) = {1 | 1 a probability measure on S}. Then one can endow P(S) with a metric d such
that d(X,, X) =30 < X, ﬂ> X. (we model convergence in law). In this “abstract set-up”,
what we have proved (which is called Prokhorov’s theorem) reads:

Let U C P(S), then U is tight <= U is relatively compact in P(S) (U compact in P(9)).

12.2 Ex 12.2
I shall use the lecture’s numbering (points a to €). There, we showed that (a) < (b) <= (c).
We shall prove that (¢) <= (d), that ((¢) <= (d)) = (e) and that (e¢) = (b), completing the
proof of the Portmanteau theorem.
For the first equivalence, (¢) <= (d), we have:

liminf P({X,, € U}) > P({X € U}) YU C R open

= linrr_1>i£f1—P({Xn €EF})>1-P{X € F})V F CRclosed

— lznigf—P({Xn € f})>—-P{X € F})V F CR closed

<= —limsupP({X, € f}) > —P{X € F}) VF CRclosed. O

n— oo

Let’s turn our attention to the second implication: ((c) <= (d)) = (e). We recall that a set A
is called a “continuity set” if P(0A) = 0.

Let A be a continuity set, then A CACAandP({X € ;1}) = 0. By (c), we have
liminf P({X, € A}) > P({X € A}) <= liminfP({X, € A}) > P({X € A}),
n— 00 n— 00

and by (d):
limsupP({X, € A}) <P({X € 4}) < Jim. P{X, € A}) <P(X € A).

n—o0

Whence lim,,—, o P({X,, € A}) = P({X € A}). O

Now we finally prove that (e) = (b). Recall from exercise 8.2 that for X : § — Ry a non-negative
random variable, we have that

E[X] = /Ooo PUX >t} dt. ©
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We claim this equality is a special case of the following:

Proposition: Let y be sigma-finite on R and g : (R, B(R), ) — R, be measurable, then

/Rgdu/ooou({gm}) an,

where p is the Lebesgue measure.

Indeed, to retrieve Q, take g(z) = x and p = X,P; then our claim reads:

o= [+ utds

X.P

— [ 9(o) n(aa)
R
— [ ullg>u)) du,
R
and p({g > u}) = (X.P)({g > u}) = P({X > u}). So this is indeed the relation displayed above.

We now set out to show our claim holds true.

Proof. We shall work on (R x Ry, B(R) ® B(R}), u ® ), where 77 is the Lebesgue measure on R.
Note the product measure is sigma-finite, which is a prerequisite to using Fubini’s theorem. Let
A ={(x,u) € R x Ry such that f(x) > u}. Then A can be rewritten as

A= J ({f>r}x[0,7]) € BR) ® BR,).

TEQi

We have by Fubini that

(1 )(4) = ﬁ j(A,,) 7i(du)

Ry

- [ (A.) (as).
R

The last integral is just [; f(z) pu(dz). On the other hand,

[ H(A) Fi(du) = /, w({f > u)) Fldu) PATEEED0 / ({f > u}) pldu).

We are done. O

It remains to prove point (b). Let A : R — Ry be bounded continuous. We have

17l cup
[ @ = [P0 > up) plan) = [T ()P > ) () o
h is continuous, so we have:
{h>u} C{h>u}=90{h>u} C{h=u}.

Define
D= {UZO: X*P({h:u})>0}: U {nZO: X,P({h =u}) > %}

n>1
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Each set in the union is finite because the sets are disjoint 2 by 2. So D is countable. Whence
u(D) =0. So from (e):

(Xn)P({h > u}) =3 X.P({h > u}), p-as.,

whence by dominated convergence:

1Pl gp
&5 [ > ) ) = [ ) d

Now for a general h, split h into h = h — h_. O

12.3 Ex 12.3

This exercise is called “Slutsky’s theorem” in the literature and is an important result for statistics.

We have to show that

Ynﬂc:Ynﬂc.

The converse implication is, of course, true. We recall the following definition:

tn “@ w if for any bounded function h : R — R one has lim [ h(x) du,(z) = /h(x) dp(x).

n— oo

Warning: In order for Y, ﬂ ¢, we need all Y,, to be modelled on the same probability space
(Q, F,P), or else this would not make sense (write convergence explicitly). For convergence in law,
this assumption is not necessary, we are really just looking at the push-forward measure (the laws
of the random variables at hand).

(a) We have, for h continuous bounded, that

/h(Yn) P "= /h(c) dP
(Convergence in law), and we should show that
foralle >0: P({|Y, —c| > €}) =3 0.
We compute (for a fixed € > 0):

0 <P{|Y,—c| >€})
E[l{)y,—c|>e}]
Elac(Yy)]

— E[ae(0)]
0,

IN

3

where the function ac > 1y, —¢j>¢} With ae(z) € [0,1] V z is defined as:

1 forx € (c—e€,¢c+€)°
ae(x):=<0 forz =c¢
S

[0,1] elsewhere, so that the function is continuous.

We are done.
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(b) (X,,) is tight (since it converges in law to X): for any € > 0 there a K, such that P({|X,| >

K.}) <eforallneN. Y, B by point (b) (i.e. for any € > 0: P({|Y,,—c¢| > €}) = 0 as n — o0).
We write

|/h(Xn,Yn)—h(X,c)dP| < ’/h(Xn,Yn)—h(Xn,c)dP|+|/h(Xn,c)—h(X,c)dP|

a B
and deal with each term separately.

e As for 8, we note that h(-, ¢) is continuous bounded; since X, (—E)> X, we have that 5 — 0.

e The reasoning for « is a bit more involved. Decompose R x R = AU B U B as follows:
- A=K x[c—¢&c+é,
— B=K.x[c—¢&c+ ¢,
- C=K: xR,

for some € > 0 and € > 0. Now decompose

o= EHh(Xn»Yn) - h(XTHC)H

=:N

into three parts:

E[|(X, V) — (X, ¢)[] = ERL4] +E[R1 5] + E[R1c].
U 14 w

— For fixed € > 0, using uniform continuity of (the continuous function) - (on the compact
K. x [c— €& c+ ¢€]), we have that U — 0 as € — 0.

= V< pllPHIYn ¢l > €})

W < 2€]] .

Putting all the bricks together yields

< U+ 2l e+P({Yn — ] > &) =50
(where we first take € to 0 and then €). We are done, oo — 0. O

(c) We know that (X,,Y,) @, (X,c) by (b). We're only interested in the distributional con-
vergence of X,, +Y,, and X, Y, which is independent from the random variables “carrying” (by

means of pushing the measures forward) the distributions at hand (!). Indeed convergence in law

X, ﬂ X reads

/ fd(Xn).P) — / f d(X,P) for all continous bounded function f,
R R

which only makes the laws (X,,).P and X,P intervene. Let’s choose (X,,, Y, )nen and (X,Y) in

Skorokhod’s representation theorem for vectors. Then (X,,Y,,) — (X,¢) on R X R (and thus in
law). But then (by continuity of + and *), we have X,,¥;, % Xcand X, +Y,, % X 4+ c. We
know that

a.s. convergence = convergence in probability = convergence in law,

so we are done! O
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124 Ex 124

What is meant is: let p and v be two o-finite measures on R such that for all a < b:

ul(a1) + gal{a,b}) = () + Lo({a,b))
then p = v.

Claim: a sigma-finite measure p on R can only have a finite number of atoms of positive mass.

Proof. Suppose it is not so. We have a growing sequence of sets A, C A,, with U,enA4, =R
and p(A,) < oo by o-finiteness. Denote D = {z € R | pu(x) > 0}. Suppose Card(D) > Card(N),
then there is an A,, such that Card(D N A4,,) > Card(N) (or else Card(D) = Card(N). But then
oo > p(A) > u(DnNA,) = oo (the last equality by exercise 1.6, a contradiction. O

Now for all a, b ¢ D, we have u((a,b)) = v((a,b)) and R\D = R, since D is countable. So one can
choose a,, | a with a, € R\D and b,, 1 b with b,, € R\D and then

p((a,0)) "= plan, ba) = v(an, by) =3 v((a,b)).

12.5 Ex 12.5

This is called the “Dirichlet Integral”. You can find five methods of proof on Wikipedia: https://
en.wikipedia.org/wiki/Dirichlet_integral. These five methods are: the Laplace transform,
double integration, differentiation under the integral sign (Feynman’s trick), complex integration
and the Dirichlet kernel. I suggest you read the proof based on complex integration.
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13 Solutions - Sheet 13

13.1 Ex 13.1

o (a) ox(0) = E[¢"¥] = 1.

° (b) SDaX+b(t) _ E[ez‘t(aX-i-b)] _ eith[ei(taX)} _ €ibt<PX (at).

(¢) lex (t)| = [E[e®™X]] < E[|e!*X|] =1 for all t € R.
——

1

(d) p_x(t) = E[e*=X)] = E[etX] = E[eitX] = px(t). px(t) ERVtER <= ¢_x(t) =
vx(t) Vt € R. And by using the fact we are dealing with characteristic functions, this is

true if and only if X © -X.

(e) lpx (t+s) —px(t)] < E[|eftH9X — X || = E[|e"™* —1]] = 0, a.s. as s — 0 by dominated
— —

— |eitX‘.|ei5X_1‘ <2

=1

convergence, independently of the chosen ¢! Thus we have uniform continuity.

13.2 Ex 13.2
(a) We calculate

using independence in the second equality.

(b) We start with a few measure-theoretic considerations. First, we recall that if X and Y are
independent, then (X,Y).P = pux ® py. Define

px o py = () (px @ py ),
which is a measure on R. (+:R — R :: (z,y) — « + y is continuous, thus measurable). Then

px x py (A) = By [La] = / 1a(z +y) px(dz) © py (dy).
R2
Similarly,

px * py (f) = Bpuyupy [f] = . [z +y) px(dr) @ py (dy).

Now to our problem. Let us calculate the characteristic function of px * py:

Pux*py (t) = Eux *py [eitz]

z:iﬂ;/ eit(z—&-y)ux(dx)uy(dy)
R2

Fugznl / eitm LLx (da?) / eity /.tY(dy)
R R

(a)
= px+vy (1)
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So the law of X +Y ist pux *uy, by injectivity of the characteristic function on the set of probability
measures.

(c)
nxy(4) € ux = uy (4)

= /R2 la(z +y) px(dr) @ py(dy)

PX Py MO

- / La(t) px(5) - py (¢ = ) u(ds) © ()
Fini / 1y (1) / px(s) - py (t — 5) p(ds)) u(dt)
_ / 1a(0)( / px(t — 3) py (3) (d3)) p(dt),

R R

where we denoted the Lebesgue measure by p. In the third last equality we made the following
change of variables: x +y =t & x = s, which has determinant 1. In the very last equality and for
fixed t, we made the change of variables t — s = §, which also has determinant 1. O]

13.3 Ex 13.3
We shall deal with (b) first in order to recycle the result in (a). Other approaches are possible.

Part (b). Define
Ap =S, >myn}
for some fixed number m € R. Then by the Portmanteau theorem,

2

Pl =P({52 2 m}) =5 [TC Zwrsom,

since p({y : Liz>my(y) is discontinuous}) = 0, with p the Lebesgue measure on R. Now

P(limsup Ay,) = P(Mp>1 Uj>n 4j)
= lim \L P(UjZnAj)
>limsup P(A4,)

n—oo
>sup;>, P(4;)
L)
> 0.
Note: we also have that, for any k£ € N:
{w: S, >my/noc-often, n € N} = {w: S, > my/n co-often, n € {k,k+1,k+2,...}}.

In other words, rephrasing the calculation above: limsup A,, € Gy for all & € N, where G, =
0(Xk, Xk+1,-..). Thus limsup A, € NpenGr - the tail sigma-algebra. As a consequence, by
Kolmogorov, P(limsup A,) = 0 or 1. But P(limsupA,) > 0, so it is 1! We have proven

lim sup % = +o00. Now we have that also lim sup % =00 as., where S, = —=X; — X5 — ... — X,,.
Thus — lim inf % = 00, which is equivalent to lim inf S—\/% = —00 a.s. O

Part (a). If S—\/% — P, (then by the central limit theorem, X ~ A(0,1), since convergence in

probability implies convergence in law). Then 3 a sub-sequence ny such that j% 2% X. But
applying part (b) to (S, )ken yields a contradiction: indeed, f/% cannot converge to any random

variable.
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134 Ex 134

We proceed by induction (or iteration). |ay|, |az| |b1] |b2| < 1 for a1, ag, b1, b € C. Then

laraz — bibe| = |(a1 — b1)ag + biagz — biby |
————
b1(az—b2)
<lay —bi| - ar] + [b1] - |ar — b2
< lar = b1| + [az — ba|.

Now for n > 2

My a; — TG, bi| = |ay, - H;Zf‘li —bn - H?;llai |
—— ——
[-[<1 [-1<1
<lap — bn| + |H;L=_11ai - H?;llb”

induction

n—1
‘an - bn| + Z |ai - bz|
1=1

13.5 Ex 13.5
(a)

ox, (t) = E[e"¥"]

n itx
:/ € du
_n 2n

eitz "
it2u|—”
eitn _ e—itn
(it)2n
12sin(tn)
2tnae
sin(tn)
tn

)

L du.

—n,n] 2

where in the second equality we used that (X,).P = 1;

(b) Let t be fixed. For n large enough we have |1 — ’5627’ff| < 1forall k=1,...,n Also since
lox, (£)] <1 for all ¢, we have by exercise 13.4 that

N t2k? " t N t2k?
¢z, () — i (1 - )’ = ’Hk=190Xk (T) — Hg=1 (1 - )‘

6n3 n2 6n3
” 1 t2k?
[ () 1 2
—I;‘QDXA:(’Hg + 6n3

Now by (a) we have

t sin T)
(2= )

nz

The function f(x) = sin(z) | f(0) = 1, has the Taylor series

x



and hence there exists C' > 0 such that |f(z) — 1+ %2| < Ca* for all # € [—1,1]. Thus for n large
enough we have

t t2k? kAt
foxi(p) =1+ G| < 5
and summing over k we get
LI 5
S LA e )
— nb n

This proves (b).

(c) We note that

10g( ;;:1(1 t2k2)) Zlog( kz).

By using the Taylor series

2 a3

log(l —x) = — — 4+ —4...
og(l—x) (x+ 5 + 3 +...)
for |z| < 1, there exists C' > 1 such that |log(1 — z) + 2| < Ca? for all z € [—3,1]. For n large

272
L k3 < % and thus

6n
= t2k? = L AL W s
log(1- 25 = log(1— ) -
; 0g< 6n3) ;(( og< 6n3>+ 6n3> 6n3)
O an+D)2n+1) < t2k> t2k?
= o8 5 +§(lg1‘w o)

The first term tends to —% as n — 0o, while the sum is in absolute value less than C'y_;_, % <

2
1 — 0. Thus > p_, 10g<1 - tgf;) — —% and hence II% (1 — %) — e~ 15, which is the

characteristic function of a N'(0, §).
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14 Students’ solutions

14.1 Jingeon An’s solution to...
14.1.1 Ex 7.2

Let p,(A) = #(;:?le;) and v, (A) = V(V‘?Z’:)") for all A € G if u(A,) =v(A,) #0. Then p, and v,

are probability measures and u,, = v, on II, so u, = v, by Dynkin’s 7-A lemma.

Now let A, := A,/ UZ;ll Ay, so that (Ay), is a partition of Q. In the upcoming calculation, we
shall consider only those n € N such that p(A4;) = v(A;) #0 (w.lo.g. #0 for all i &).

Then for any A € G:

Sop=v. O

14.1.2 Ex 8.4

Consider the measure space (N2, 2N2,,u ® ), where p is the counting measure on N. Let

-1 fn=m-1
flnym): =<1 ifn=m+1
0 otherwise.

Then obviously f is measurable (just consider the fact that the sigma-algebra is the power set),
and

[ [ s utny ptam) =1 2 <1 = [ [ f,m) () (o).

The condition that is not satisfied in Fubini’s theorem is of course the integrability condition. Note
that we have played with the fact that N2 has a corner (the origin)! This counter-example would
fail on Z2.

14.2 Carl Johansson’s solution to Ex 7.5

We begin by proving the Jensen inequality for vector-valued random variables X : (2, F,P) — R"™.
Let ¢ : R — R be a convex function.

For any xo € R™, there are two numbers a;, € R” and b,, € R™ such that ¢(zq) = (az,, o) + by,
and ©(y) > (ay,zo) + by, for all y € R™. Then, taking x¢ = E[X],
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@(E[X]) = <awov E[X]> + bwo
E[<a$07‘r0> + bwo]
Ele(X)]

0.

INIA

Note that in the first inequality, it is implicit that E[o(X)™] < oo, which makes this operation legal.

Thus, since the function || - || : R” — R ::  — ||z|| is Borel measurable (because continuous), || X]||
is measurable. || - || is also convex and therefore, using the result above: ||E[X]| < E[|X]]]. O

14.3 Jonas Papazoglou-Hennig’s solution to...
14.3.1 Ex 1.4

I don’t know about ”interesting” or ”innovative”, but hoping for ”working” :)

For the first part of the exercise, I propose a maximality argument:

Proof. Let P, = {Il is a partition of T': II C G, |TI| = n}. T is finite and there is at least one non-
empty P,, namely P; = {{T'}}. Any partition of T' can contain at most |T’| elements, which would
correspond to the finest partition into singletons of the set 7. Hence we can find 1 < m < |T],
which is the maximal index such that P,, # 0 and P, = @ for all n > m.

Assume that there existed ITy, Il € P, such that II; # II;. Then there would be a partition set
A € Iy, which is not in II;. But since II; is a partition, there must be some B € IIy, such that
C=ANB#(and D= B\ C # (. Note that C, D € G. But setting

M=T1,U{C,D}\{B} C¢G

forms a partition of T with cardinality m + 1, contradicting maximality of m. Hence we have
shown that |P,,| = 1, i.e. there exists a unique maximal partition IT* C G.

Any element of G can be expressed through a finite union of elements in II*. Because if there
were some set £ € G, which could not be written as such, then E must properly intersect (i.e.
) # FUA C E is a proper subset) at least one element of IT*, allowing us to use an analogous
construction like before to create a larger partition of T' contained in G, which would contradict
maximality of IT*.

Conversely any non-maximal partition II C G cannot form every set in G by taking unions. This
is because if IT is not maximal, there must be some F' € II such that F' is the disjoint union of at
least two elements in IT*, and clearly either one of these elements cannot be formed by union of
sets in II alone.

We therefore conclude, that the maximal partition IT* is the unique partition of 7' contained in G,
which allows every set in G to be written as a union of elements within it. O

For the second part of the exercise, I use the principle of good sets:
Proof. Let {A;,}x=1,....n be a partition of T as given. Take
G ={A: Ais a union of some of the Ay, ..., A,}.

Note that we allow the empty union, hence () € G. Also, for A € G, we know that

A:UAk,

kel

A¢ = U Ay,

ke[n]\I

for some I C [n], therefore

o1



which implies A° € G. Finally, let (B,) € G and B = |J, B,. Then for each A, there exists
I, C [n] such that B,, = Uy, Ax and thus

B:LnJBn:U U Ay,

n kel,

which implies B € G.

We see that G is a o-field and conclude G = G, proving that indeed every set in G may be written as
a union of the given partition. By the previous exercise, we further note that the sets {Ax}r=1,.. n
must be a maximal partition of 7" contained in G, hence it must be the unique generating partition

of G. O

The reason for the name principle of good sets stems from the fact that we identify the system of
all desirable sets (in the above case G, the good sets) and can show some structure of this system
to conclude that it is in fact the entire o-field.

14.3.2 Ex 2.7 (b)

I propose a ”0-1”-argument:

Proof. Y is X-measurable, therefore, for any k € R,
{Y <k}

is contained both in ¢(X) and o(Y"), where these sigma-fields are further independent by assump-
tion. Hence, we can write

PIY < k] =P[{Y <k} n{Y < k}] =P[Y < k]2,

where we used a trivial decomposition of the event {Y < k} and consider the first set in the decom-
position to belong to o(X), the second to o(Y), and then invoke independence of the sigma-fields
to write the probability of intersection as a product of probabilities. The equation immediately
yields that

PY <k] € {0,1}.

Note that in general, the distribution function Fy (k) := P[Y < k] is increasing and right-continuous
in k, moreover
lim Fy (k) =0, lim Fy(k) = 1.
k——o0 k—oo
We can infer that
S={k:Fy(k)=PlY <k]=1}

is closed and k* = inf S exists and is contained in S. Using that in this case, P[Y < k] € {0,1} for
all k,

HY—kﬂ—P[ﬁ{M—&ﬂungk*+Unﬂ

n=1

= lim (P[Y <k +1/n] - P[Y < k* — 1/n])

n—oo
=1-0
= 1,

where we used continuity of measure for the second equality. So, Y = k* € R a.s., as desired. [
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14.4 Salim Benchelabi’s solution to Ex 3.5
We set Q = {1,2,3} and we take the m-system = {{1},{2},0,Q}. We define a mapping p such

that:
p({1}) = p({2}) = Q) =1
n(®) =0

To find a countable family (A, ), of disjoint sets of S such that the union is in S, one has to set all
A, to () except for one which can be any set of S. If one considers these possibilities, the countably
additive property is indeed verified.

However the set {1, 2} verifies {1,2} € o(S) and p({1}) + p({2}) > w(2) > w({1,2}). Then p is
not a measure on o(.S).
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15 Past Exams

Dear students, here are the practice and final exams for the autumn semester 2020. Due to Covid,
the exam was open book & remote. This year, the format will not be the same. It will be on
campus and without any material.

15.1 December 2020 Practice Exam with Solutions

Question 15.1.1 (6 points).

Let (X,,)22,, (Yn)22,, X and Y be random variables. Are the following claims true or false?
(Answer only “true” or “false”, no need to justify your answers.)

(a) If E and F are two events with P[E] = 1, then P[E N F] = P[F].

(b) If (X,,Y,) % (X,Y), then X,, % X and V,, 5 Y.

(¢) The set {0,{1,2},{2,3},{1,2,3}} is a o-algebra on {1,2,3}.

(d) The half-open intervals [a,b), a,b € R, a < b, form a semi-algebra.

(e) The law of a random vector (X1, Xa,...,Xy,) is determined by the c.d.f.s Fx,,..., Fx, .
(f)

f) Two random variables X and Y are independent if and only if for any Borel sets A, B C R
we have P[X € A,Y € B] =P[X € A]P]Y € B].

Grading: 1 point for every correct answer, —1 points for every wrong answer, 0 points for no
answer. Minimum number of points for the whole question is 0.

Solution 15.1.1.

(a) True.
Since ENF C F, we have P[E N F] P[F]. Note that 1 = P[Q] = P[E U E°] = P[E] +
P[E‘] = 1 + P[E°], so that P[E°] = 0. Since F = (ENF)W (F N E°), we have P[F] =
PIENF]+P[E°NF]<P[ENF]+ P[ ‘|=P[ENF].

(b) True.

Let h: R — R be bounded and continuous. Then the function g: R> — R given by g(x,y) =
h(z) is also bounded and continuous and thus E[h(X,)] = E[¢(X,,Y,)] — E[g(X,Y)] =
E[r(X)].

(c) False.
The complement of {1,2} is {3} which does not belong to the set.

(d) False.
The empty set is not included in the given set. If we add the empty set, they do form a
semi-algebra.

(e) False.

Let X andY be two i.i.d. Bernoulli random variables which take the values 0 and 1 with equal
probability. Then (X, X) and (X,Y) have same marginal laws but their joint laws differ.
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(f) True.

By definition X and Y are independent if the generated o-algebras o(X) and o(Y) are. But
every event in o(X) is of the form {X € A} for some Borel set A (See Definition 1.22 and
FEzercise 1.23 in the lecture notes.)

Question 15.1.2 (12 =2 + 5 + 5 points).

Let (X,,)22; be a sequence of centered i.i.d. Cauchy random variables with scale parameter 1,
meaning that X, has the probability density function p(z) = m (z € R). You may also
freely use the fact that the characteristic function of X,, is given by px, () = e~ !l (t € R).

(a) Show that A4, =137 | X, 4 x,.
(b) Show that P[limsup,, ., A, > A] >0 for all A € R.

(¢) Show that limsup,,_, ., A, = oo almost surely.

Solution 15.1.2.

(a) Since the characteristic function determines the law of a random variable, it is enough to
show that ¢4, = ¢x,. The characteristic function of n=* Y}, X}, is given by

[T ex.(t/n) = ox,(t/n)" = e = ox, ().

(b) It is enough to show that for all A € R we have P[limsup,,_,. A, > A] > 0 with non-strict
inequality inside the probability. Note that {limsup,,_,., A, > A} D limsup,,_,. {4, > A}.
Since the events E,, = (Jr—,,{Ar > A} are decreasing, we have

P[limsup A, > A] > P[[) U{Ak>>\}}_ lim P U{Ak>)\}] > lim P[4, > )

n— 00
n=1k=n =n

dx

p[xlzx}/:oﬂ(HxQ) > 0.

(c) Note that {limsup,,_,., A, = oo} = (oo, {limsup,_, ., A, > k} so it is enough to show that
Pllimsup,,_,., An > k] = 1 for every fixed & > 1. By (b) and Kolmogorov’s 0-1 law we are
done if we show that limsup,,_,., An > k is a tail event. But note that for any m > 1 we
have

limsup A, —hmbup ZXk+ Z Xi) —hmsup— Z X,

n— 00 n— 00 jA— n— oo k 1

where the right hand side is measurable w.r.t. a( Ukt J(Xk)) and hence it follows that
limsup,, . A, is measurable with respect to the tail o-algebra generated by the random
variables (X,,)22

n=1-
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Question 15.1.3 (14 = 6 + 2 + 6 points).

Assume that (X,,)22; is a sequence of random variables converging in distribution to a random
variable X. Let F;, and F' be the c.d.f.s of X,, and X respectively.

(a)

(b)
()

Show that if F' is continuous, then

lim sup |F,(z) — F(z)| — 0 (%)

n—o0 z€R
Give an example where F' is not continuous and (x) is not true.

n—1
Assume that X,, has the density f,(z) = (1 — %) Lo (7), x € R. Construct random

variables Y, 4 X, such that Y,, converge almost surely. You have to show convergence for
your choice of Y,.

Hint: You can use the fact that lim,, o n(z'/™ — 1) = log().

Solution 15.1.3.

(a)

Let us fix ¢ > 0 and try to show that sup g |Fy(2)—F(z)| < ¢ for large enough n. Pick A > 0
so big that P[X € [-\, A]] > 1—¢/2. Let also ng > 1 be so large that |F, (£X) = F(£))| < &/2
for all n > ng. Then for any x with x > A and n > ng we have

1—F(\), if F,(z)> F(x)

|Fo(2) — F(2)| < {1 — F,(\), if Fu(z) < F(z) "

By the definition of A we have 1 — F(\) < ¢/2 in the first case, while for the second case we
have

for n > ng. Similar computation works for z < —\ as well.

Assume then that z € [—), A]. Since [—A, A] is compact, F is uniformly continuous on it and
we may pick a finite sequence —\ = zp < 21 < -+ < &y = Asuch that F(zg41)—F(zx) < /2
for all 0 < k < N — 1. Choose now nj > ng so large that |F,(xg) — F(x)| < /2 for all
0<k<N-1andn >n;. Then if 2y <z < xgy; and F,,(z) > F(z), we have
Fo(z) = F(z) < Fo(wrga) — Fog) < [Fu(epg) = Flepp) |+ Far) — Fog) <e.

Similarly if F,,(x) < F(z), then
F(2) = Fa(@) < Flans) — Fa@i) < Floe) — Flog) + [Fag) — Fa(og)] < e,
In either case |F(x) — F,(z)| <e.

Let X = 0 be the constant random variable at 0 and let X,, = 1/n. Then F(z) = 1j,o0)(x)
and F, (%) = 1[1/n,00) (7). Clearly F(z) — F,(x) =1 for x € [0,1/n).

Let’s try to mimic the proof of Skorokhod’s representation theorem. The c.d.f. of X, is given
by
T tyn—1 T t\ " n
A= [ (1) = [ - (- 2] =1- -3
0 n t=0 n n
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for x € [0,n]. We can compute the inverse G,, of F,, as follows

Gn(y) Gn(y)

n n

3=
~—

Fn(Gn(y)):yél—(l— ))n:yﬁ(l—y)% =1- & Gu(y) =n(1-(1-y)

Let U be a uniform random variable on [0, 1] and set Y;, :== G,,(U). Then

P[Y, <] =P[U < F, ()] = Fu(1),

so Y, £ X,,. Moreover, by the hint Gr(U) = —log(1 — U) almost surely.

Question 15.1.4 (8 =4+ 4 points).

Let (Q;, F;)icr be measurable spaces and assume that F; equals the power set o-algebra P(;) for
alliel.

(a) Show that if I is finite and ; is countable for all i € I, then the product o-algebra @), ; F;
equals P([[;c; %)

(b) Give an example where I is countable and each (); is finite but the claim in (a) does not
hold.

Solution 15.1.4.

(a) The product o-algebra is generated by sets of the form [[,.; A; with A; C ;. In particular
it contains every singleton {w} with w € Q = [],.; ;. Since Q is countable, also every
subset of €2 is countable, and thus a countable union of such singletons.

(b) Let us choose I = Z and Q = {0,1} for all k € Z. Let T: {0,1}% — {0,1}# be the shift
operator mapping (wy, )22 — (Wn41)5% _oo- By Proposition 1.31 in the notes there does

n=-—o0

not exist T-invariant probability measure on P({0,1}4). However the countable product
of uniform measures on {0,1} defined on the product o-algebra is T-invariant, since it is
T-invariant on the 7-system of cylinder sets, and the set

G:={AeQP{0,1}): u(A) = w(T7'A)}
kez
of T-invariant subsets form a A-system:
e Clearly § € G.
o If A€ G then u(A°) =1—p(A) =1—u(T7rA) = u((T71A)°) = u(T~1A°), so A° € G.
o If (A,)22, are disjoint elements of G, then

o0

p(J An) =D pwAn) =D (T A,) = p(|J T7'4,) = (T

=1

(@

Ap).

n=1
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Question 15.1.5 (6 points).

Either prove the following claim or give a counterexample: Two random variables X and Y are in-
dependent if and only if for all continuous and bounded f we have E[f(X)f(Y)] = E[f(X)]E[f(Y)].

Solution 15.1.5.

The claim is false. There are probably many ways to go about finding a counterexample but this
might need a bit of creativity. (In retrospect I think this problem might have been a bit too hard
as an exam question, although it’s a cool puzzle.)

Here’s one line of thought: Let us try to find a counterexample of a random vector (X,Y) on R?
with p.d.f. p(x,y). Note that if (X,Y") satisfies the condition given in the problem statement, then
so does (Y, X). It follows that if (X', Y”) has the symmetric p.d.f.

p(z,y) +p(y, )

p(z,y) = 5 ;

then (X', Y") satisfies
E[f(X")f(Y")] = E[f(X)f (V)] = E[f (X)]E[f(Y)].

If we further assume that X < Y, then

and
E[f(X")f(Y")] = E[f(X")E[f(Y")].
This also works in the other direction: If (X', Y”) satisfies the condition then so does (X,Y") (as

long as X 4 Y). We also know that independence implies the condition, so let us try what happens
if we assume that X’ and Y’ are indepedent, i.e. p is of the form
Pz, y) = u(@)u(y)

for some p.d.f. w on R. Our goal would then to be to #ilt this symmetric density to obtain a
nonindependent density p. Let’s assume that « is any continuous p.d.f. with «(0) > 0. Then for
small enough € > 0 we may define

p(z,y) = u(@)u(y) + (z — y)h(z)h(y),

where h is a suitable function supported in [—¢,¢]. Then automatically we have p(z,y) =
u(z)u(y) and E[f(X") f(Y")] = E[f(X")]E[f(Y")] for every f. In order to have also E[f(X)f(Y)]

E[f(X)]E[f(Y)] we need to ensure that X 2 Y. This will follow if we have that

[ =@ty ds =0

for every fixed y € R, in which case both X and Y will have u as their p.d.f. Thus it is enough to
pick h in such a way that

/h(x) dz =0 and /xh(x) dz = 0.

For example h(z) = cos (Z£)1[_. (=) works. Clearly then p(z,y) # u(z)u(y) in a set of positive
measure so X and Y are not independent.
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One can also play around with similar ideas in discrete setting. For instance starting from a
uniform law on {1,2,3} we may construct the i.i.d. pair (X’,Y”) which is uniform on {1,2,3}>.
We would then like to consider

ple,y) = 5 + ol h()h()

where o(z,y) has to be chosen so that o(z,y) = —o(y, z). For instance we can set o(z,y) = Sz 4,
where S is the matrix

0 1 -1

-1 0 1

1 -1 0

The condition for h will this time be
o(z,0)h(0) + o(z,1)h(1) + o(x,2)h(2) =0

for any fixed x and a similar condition for any fixed y. This actually implies that h is a constant,
and we can choose that constant freely as long as % — |h|? is non-negative. For instance choosing

h = 1/+/9 gives the counterexample p(x,y) = P, , where P is the matrix

ol OOl
O Ol
oo O

Question 15.1.6 (6 points).

Let (X,Y) be a uniformly distributed point in the unit disc in R?, meaning that the random vector
(X,Y) has the p.d.f. p(z,y) = %1{12+y2§1} w.r.t. the Lesbesgue measure.

(a) Compute the regular conditional distribution of X given o(Y').

(b) Next let us write (X,Y") in the polar form (X,Y) = (Rcos(f), Rsin(f)) with 0 < R <1 and
6 € [0,27). Show that R and 6 are independent.

Hint: You may use without proof the fact that

/R2 fla,y) dedy = /027T /000 f((rcos(8),rsin(0)))r dr do

for any measurable f > 0.

Solution 15.1.6. (a) By Exercise 6 of Sheet 9 the r.c.d. p of X given o(Y) a.s. equals

_ pr(x,Y(w))dx _ fA l[_\/1_y(w)27\/1_y(w)2](l‘) dzx
Jrp(@,Y (w))dx 2,/1—Y (w)?

Thus 4 is a uniform distribution on [—y/1 —Y,v/1 =Y.

(b) It is enough to show that for any measurable f,g > 0 we have

E[f(R)g(0)] = E[f(R)IE[9(0)].

1A, w)
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Note that if A(z,y) € [0,27) denotes the argument of (x,y), then

E[f(R)g(0)] = E[f(v X2 +Y?)g(A(X,Y))]

. / SV P g(Alr, )Ly (@ + o) da dy

™ JR2
27 1
:%/0 /Of(r)g(e)rdrdé’

_ % </01 f(r)rdr) (/0% 9(0) d9>
;/0% /Olf(r)rdrd0> <71T /0% /Olg(ﬁ)rdr(w)

/Rz PV ) Loy (a® + o) da dy) (i /R 9(A(e,y)) da dy)

(VX2 +Y2)E[g(A(X,Y))]
(R)IE[g(0)]-

[
[

I
I'I'II'I'I/—\/\
- = 3|

Question 15.1.7 (10 =4+ 3+ 2 + 1 points).

Let (X,,)22, be a sequence of i.i.d. standard normal random variables and set

[N

Ly = H eXi™

k=1
for all n > 1.

(a) Show that there exists pg € (0,00) such that, as n — oo, Z, converges to 0 in L? for all
p € [0,pg) but not in LP for p € [pg, 00].

(b) Examine whether Z, “3 0 a.s. as n — oo or not.
(c) Examine whether (Z,,)22 ; is uniformly integrable or not.

(d) Examine whether (Z,,)5° , is tight or not.

n=1

Solution 15.1.7.

(a) Using the formula E[e®X*] = e (Exercise 2 of Sheet 10) we compute for p € (0, 00) that

2

E[z7) = [ Ele"* 2] ==
k=1

When p < 1 we see that this tends to 0, so Z,, — 0 in LP. Similarly when p > 1 the sequence
Z,, cannot converge, since if it did, it would have to converge to 0 (since it converges to 0 in
probability), but its norm doesn’t converge to 0. Thus pg = 1 works.

(b) The sequence does indeed converge almost surely. To show this we may use Borel-Cantelli.
Fix p < 1 and notice that for all £ > 1 we have

p(p—1)

PlZ, >k '] <E[ZP]kF <e = "kP
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where the right hand side is summable over n. Thus for any k > 1 there almost surely exists
ni > 1 such that Z,, < k~! for n > ny. Since there are countably many such k, we can
almost surely find for all £ > 1 such ngs simultaneously, and hence Z,, converges to 0.

¢) Since Z,, converges in probability but not in L', it cannot be uniformly integrable.
y g

(d) Since Z,, converges almost surely, it converges in law and hence the sequence is tight.
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15.2 January 2021 Final Exam with Solutions

Note on the format: The January 2021 Exam was open book and remote due to COVID.
Questions were randomly shuffled and for some of the exercises only a random subset of all possible
questions appeared for a specific student. The exam lasted 4 hours, giving enough time for students
to handle IT issues (scanning, submitting).

Question 15.2.1 (6 points).

Let (X,,)22,, (Yn)22,, X and Y be random variables. Are the following claims true or false?

(Answer only “true” or “false”, no need to justify your answers.)

(a) If X, % X and V,, 5 Y then (X,,,Y,) % (X,Y).

(b) If X, B X, E[|Xp|] < 1forall n>1, and X € L', then X,, — X in L.

(¢c) If X, » X in L%, then X,, — X in L2.

(d) If (X,)52, is a sequence of positive i.i.d. random variables with E[X;] = 7, then
1 lo ﬁ X ) —1
n g ( k) og(m)

k=1
almost surely as n — oo.

(e) If (X,,)22, are i.i.d. random variables with P[X; = 1] = P[X; = —1] = 1/2, then %
converges in law to a standard normal random variable.

(f) If (X,,)22, are i.i.d. random variables with P[X; = 1] = P[X; = —1] = 1/2, then

-
cos (’“%’“) converges almost surely to 1.

(g) If p and v are two probability measures defined on a measurable space (€2, F) that agree on
a semialgebra A C F such that o(A) = F, then p = v.

(h) If E[{/|X,|] < 4 for all n, then the sequence (X,,)22; is tight.

(i) There exists a o-finite measure p on the Borel o-algebra of R such that u({z}) > 0 for every
zeR.

(j) If X is uniformly distributed on [0, 1], then its characteristic function is integrable.

n=1

(k) If the sequence (X,)S2 ; is tight, then sup,, E[|X,|] < oo.

(1) If for all n > 1 the random variable X, is uniformly distributed in {1,2,...,n}, then X,,/n
converges in law to a uniform random variable on [0, 1].

Grading: 1 point for every correct answer, —1 points for every wrong answer, 0 points for no
answer. Minimum number of points for the whole question is 0.

Solution 15.2.1.

(a) False.
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Question 15.2.2 (10 = 3 4+ 3 + 4 points).

Solve the following problems:

(a) Give an example of two probability measures p and v defined on the power set o-algebra
F =P ({1,2,3,4}) and a subcollection A C F with o(A) = F such that u(A) = v(A) for
every A € Abut p#v.

(b) Give a counterexample to the following claim: If u is a countably additive function defined
on a A-system A on the sample space {1,2,3,4} such that u({1,2,3,4}) = 1, then p extends
uniquely to a probability measure on o(A).

(c) Let X be an R-valued random variable. Show that there exists a sequence X,, of R%-valued
random variables such that each X,, takes only finitely many values and X,, — X surely as
n — 00.

(d) Show that there does not exist a probability measure p on the Borel g-algebra B of R such
that (A +z) = u(A) forall A€ Band x € R. (Here A+z:={a+x:a€ A}.)

(e) Show that the Borel o-algebra on R is generated by intervals of the form [k27", (k + 1)27"]
withn >0and k£ € Z.

(f) Show that if X, 5 X and (X2)°°, is a uniformly integrable sequence then X, — X in L.

Solution 15.2.2.

(a) Take A= {{1,2},{1,3}} and u({k}) = pi, v({k}) = qx with p1 +p2 = ¢1 +¢2 and p; +p3 =
q1 +¢q3. For instance p1 = ps = p3 = ps = % and g1 = ps = %, g2 = g3 = 0. Then A generates
P({1,2,3,4}) since it generates the singletons (we let the reader carry out the details).

(b) One counterexample is the following: A = {0, {1,2},{1,3},{2,4},{3,4},{1,2,3,4}}, n({1,2}) =
w({3,4}) = u({1,3}) = u({2,4}) = L. We can extend y either as the uniform measure on
{1,2,3,4}, or as u({1}) = p({4}) = £ and p({2}) = u({3}) = 0.

[SIEENY
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(¢) We showed during lectures that any R—valued random variable Y admits a sequence (Y;,)%2

n=

1
of simple random variables such that Y;, — Y surely. Let us denote X = (X1 ... X(@),

Then for each X %) there exists a sequence of random variables XT(Lk) — X®) surely, and then

X, = (X,(ll), xP. .. ,X,gd)) — X surely.

(d) Assume that such a probability measure exists. Then 1 = p(R) = p(U, [k, k+ 1)) =
ey w([k, k + 1)), so one of the u([k,k + 1)) has to be nonzero. But then by translation
invariance the sum is infinite, which is a contradiction.

(e) Let A be the collection of the intervals of the given form. We know that the Borel sigma-
algebra is generated by open intervals, so it is enough to show that (a,b) € o(.A) for all a < b.
In fact we claim that (a,b) = U{[£, 5] : k € Z,n > 0,[£, 5] C (a,b)}. Clearly the
right hand side is contained in the left hand side. To show the other inclusion let x € (a, b).
Then there exists n > 0 such that  — 2™ > @ and = + 2™ < b. Letting k¥ = |2"z| we have

k k4l < 27z—111 k ktl
ge <wand Bt > 2220 — g g0 2 € 55, B C (a,b).

(f) First of all note that X € L? since by Fatou’s lemma E[X?] < liminf,_,, E[X?2] < co. Note
that we have that |X,, — X|?> — 0 in probability. It is enough to show that |X, — X|? is
uniformly integrable. Note that for any event A we have E[|X,, — X|?14] < 2E[X214] +
2E[X?1 4], and the right hand side tends to 0 as P(A) — 0, uniformly in n by the uniform
integrability of (X2)%° ;.

Question 15.2.3 (10 = 3 + 2 + 3 + 2 points).

Let (X,)52; be a sequence of non-negative uniformly integrable random variables.
(a) Show that for any € > 0 we have Y ,_, P[X; > en] — 0 as n — c0.

(b
(c

(d) Assume now that (Y;,)22; is a sequence of identically distributed non-negative random vari-

ables in LP for some p > 1. Show that

Show that n~! maxj<x<, X) — 0 in probability as n — oo.

Show that n~! maxi<g<n Xt — 0 in L' as n — .

)
)
)
)

lim n_l/pE[ max Yk} =0.

n— o0 1<k<n

Solution 15.2.3.

(a) Note that P({Xy > en}) = E[l{x,>en}) < E[%]l{xkzm}] and hence
ZZ:I P({Xk > en} < ZZ:I iE[Xk]]-{szen}] < %Supk21 E[Xk]]-{szen}], where the I‘ight
hand side goes to zero as n — oo by uniform integrability.

(b) It is enough to show that for any € > 0 we have P({n~! maxj<x<n, X) > €}) — 0 as n — oo.
Note that P({n~! maxi<p<, Xi > €}) = P(UP_ {X}, > en}) < >, P({Xk > en}) — 0 by
point (a).

(c) By (b) it is enough to show that n~! maxj <<, Xj is uniformly integrable. We note that for
any t > 0and n > 1 we have E[n™" maxi<k<n XrL{n-1 max;cpep Xe5t}] < 2onet Xkl {n-1x,51}
and this further less than supy > E[ X5 1{x, >nt}] < supg>; E[Xx1lix,>¢]- The right hand side
does not depend on n anymore and tends to 0 as ¢t — oco.
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(d)

Since Y,P are identically distributed, (Y?)2° ; is a uniformly integrable sequence. By applying
(c) we thus have n™'E[max;<k<, Y,’] — 0 as n — oo, and by Jensen’s inequality

(niiE[ max Y,])? = n ' (E[ max Y,])? <n 'E[ max Y?]) =0,
1<k<n 1<k<n 1<k<n

1
SO (nigE[maX1§k§n Yn]) — 0.

Question 15.2.4 (12=143+ 1+ 2+ 3 + 2 points).

Let (Xn,k)pp=1 be a family of i.i.d. random variables such that each X, ; has the p.d.f.

3 . 1[1700)(CE)

p(x) = o

Denote Sy, ==Y, X for all n > 1.

b

(c
(d

(a)
(b)
)
)

()
(f)

Show that the expectation p = E[X 1] exists and compute its value.
Show that n='S,, — p in L2
Show that n=1/2(S,,—nu) converges in law to a normal random variable. What is its variance?

Let ka = Xnkl{x,  ,<n}y and S, = Z:I X’n,k. Show that almost surely S,, = S,, for all
large enough n.

Prove that there exists C' > 0 such that E[(n'S, — E[X,,1])}] < Cn~2 for all n > 1.

Show that n~1S,, — p almost surely.

Solution 15.2.4.

(a)

(b)

Since everything is non- negative we may simply compute E[X1,1]
_ (> 3 = 3
=), - pde= ‘1 =

We have E[Jn~"S, — pf?] = El(n~" S35_, X — %] = El(n~ Sy (Xoi — )]
=n"?Y 0 ket El(Xng — #)(Xo; — p)]. Note that by independence the expectation is 0 if

j # k. Hence this equals n=2 >} E[(X,, x — p)?] = n 'E[(X1,1 — p)?] = n~to? — 0, where
o =E[(X1n —p)?] =EXP, | —p? = [T Fdr—p=3-§ =1

Note that S,, has the same distribution as Y ;_; X1 %, so S”\;ﬁ"” — N(0,6% = 2) by the

5 = p < Q.

Central Limit Theorem.

By the Borel-Cantelli lemma it is enough to show that > o2 > 1 P({X, 1 > n}) < co. We
have P({ X, > n}) = f:o 3 dx = ;—3,1 L5850 > Y P Xk 2n}) =300 L < oo,

We compute E[(n~1S, — E[X,])*] = n~* sz,kvl:l E[(Xni — E[Xni]) - (Xn; — E[X0nj]) -
(X —E[Xnk])- (X1 —E[Xn.])]. Note that by independence only terms where i = j = k = [
ori = j # k =1 (or permutations thereof) are nonzero. Hence this equals n_3E[()~(n71 —
E[X,.1])4+ 654; E[(Xn.1—E[X,.1])%]2. The second term is O(n~1) since E[(X,, 1 —E[X,,1])?] <
E[X2,] = 3. For the first term we note that E[(Xn1 — E[Xn1])Y] < 16p* + E[Xﬁﬁl] =
16" +16 [ L2 '3 dx = 16p* + 48n, so the first term is also O(n).
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(f) By (d) and since E[X, 1] — p as n — oo, it is engouh to show that n='S, — E[X, ] —
0 almost surely. We will again use Borel-Cantelli. Note that for any ¢ > 0 we have

St P({In '8, — El,]] > o)) < ooz, SO Segflealld < G570y < oo Thus by
Borel-Cantelli [n 'S, — E[X,,1]| < ¢ for n large enough. Considering the countable sequence
of epsilons € = L and m = 1,2,.. ., we see that with full probability In=1S, —E[X,.1]| = 0
as n — 0o.

Question 15.2.5 (8 points).

Write a short essay (at most 500 words) on Carathéodory’s extension theorem and product spaces.
The essay should contain high level answers at least to the following questions:

e What is Carathéodory’s extension theorem?
e Why is it important?
e How is it proven? (A brief summary of main ideas, no details!)

e How can it be applied in the construction of product measures?

Solution 15.2.5. We refer to your lecture notes.

66



16 Exercise Sheets

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13

Exercise Sheet 1
Exercise Sheet 2
Exercise Sheet 3
Exercise Sheet 4
Exercise Sheet 5
Exercise Sheet 6
Exercise Sheet 7
Exercise Sheet 8

Exercise Sheet 9

Exercise Sheet 10
Exercise Sheet 11
Exercise Sheet 12
Exercise Sheet 13

67



References

[1] Rick Durrett. Probability: Theory and Fxamples. Ed. by Rick Durett. 2019 (cit. on pp. 1, 22).

[2] Toannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. Springer
Verlag, 1991 (cit. on p. 1).

[3] Jean-Frangois Le Gall. Brownian Motion, Martingales, and Stochastic Calculus. Ed. by Shel-
don Axler and Kenneth Ribet. Springer Verlag, 2010 (cit. on p. 1).

[4] Jean-Frangois Le Gall. Intégration, Probabilités et Processus Aléatoires. Ed. by Jean-Francois
Le Gall. 2005 (cit. on pp. 1, 29, 31, 35).

[5] Daniel Revuz and Marc Yor. Continuous Martingales and Brownian Motion. Springer Verlag,
1999 (cit. on p. 1).

68



Index

£?, Hilbert space structure, 35
0-1 Argument, 52

Borel-Cantelli, 14, 39, 65, 66

Carathéodory, extension theorem, 66
Cauchy condensation criterion, 21
Central limit theorem, 47, 65
Characteristic function, 46, 49, 55, 62
Complete measure space, 15
Conditional distribution, 59
Conditional expectation, properties, 30
Conditioning, density random variables, 35
Continuity set, 41

Convexity, 25

Cylinder set, 10

Dirichlet integral, 45

Disjoint union, 3

Dynkin system, 10, 28

Dynkin, pi-lambda theorem, 31, 50

Equivalence of norms, 27
Exponential random variable, 13

Fubini’s theorem, 28, 29, 42
Fubini, counter-example, 29, 50

Gaussian Space, 35
Girsanov’s theorem, 27

Hoélder’s inequality, 33
Independance, 13

Independent conditioning theorem, 31
Independent grouping theorem, 14

69

Jensen’s inequality, 25, 30, 33, 35, 50, 65
Joint law, 54

Kolmogorov, 0-1 law, 37
Kolmogorov, 3 series theorem, 38
Kolmogorov, tail theorem, 38, 47
Ky Fan metric, 16, 18

Law of a random variable, 8
Law of large numbers, 36, 39

Marginal law, 54
Markov inequality, 18, 36
Minkowski’s inequality, 34

Paley-Zygmund inequality, 40
Pi system, 10, 12, 23

Polar coordinates, 59

Polish space, 41

Portmanteau theorem, 41, 47
Product measure, 8

Product space, 8

Prokhorov’s theorem, 41
Pseudometric, 11

Riemann sum, 25

Skorokhod, representation theorem, 44, 56
Slutsky’s theorem, 43
Symmetric difference, 11

Tail sigma-algebra, 36, 39, 47
Tightness, 41, 44, 60
Trace sigma-algebra, 23

Uniform integrability, 22, 60, 63—-65
Uniform random variable, 13



	Solutions - Sheet 1
	Ex 1.1
	Ex 1.2
	Ex 1.3
	Ex 1.4
	Ex 1.5
	Ex 1.6

	Solutions - Sheet 2
	Ex 2.1
	Ex 2.2
	Ex 2.3
	Ex 2.4
	Ex 2.5
	Ex 2.6
	Ex 2.7 - Challenge

	Solutions - Sheet 3
	Ex 3.1
	Ex 3.2
	Ex 3.3
	Ex 3.4
	Ex 3.5
	Ex 3.6 - Challenge
	Ex 3.7 - Challenge

	Solutions - Sheet 4
	Ex 4.1
	Ex 4.2
	Ex 4.3
	Ex 4.4
	Ex 4.5
	Ex 4.6
	Ex 4.7
	Ex 4.8 - Challenge

	Solutions - Sheet 5
	Ex 5.1
	Ex 5.2
	Ex 5.3
	Ex 5.4
	Ex 5.5
	Ex 5.6 - Challenge

	Solutions - Sheet 6
	Ex 6.1
	Ex 6.2
	Ex 6.3
	Ex 6.4
	Ex 6.5
	Ex 6.6

	Solutions - Sheet 7
	Ex 7.1
	Ex 7.2
	Ex 7.3
	Ex 7.4
	Ex 7.5
	Ex 7.6

	Solutions - Sheet 8
	Ex 8.1
	Ex 8.2
	Ex 8.3
	Ex 8.4
	Ex 8.5
	Ex 8.6 - Challenge

	Solutions - Sheet 9
	Ex 9.1
	Ex 9.2
	Ex 9.3
	Ex 9.4
	Ex 9.5

	Solutions - Sheet 10
	Ex 10.1
	Ex 10.2
	Ex 10.3
	Ex 10.4
	Ex 10.5
	Ex 10.6
	Ex 10.7

	Solutions - Sheet 11
	Ex 11.1
	Ex 11.2
	Ex 11.3
	Ex 11.4
	Ex 11.5
	Ex 11.6

	Solutions - Sheet 12
	Ex 12.1
	Ex 12.2
	Ex 12.3
	Ex 12.4
	Ex 12.5

	Solutions - Sheet 13
	Ex 13.1
	Ex 13.2
	Ex 13.3
	Ex 13.4
	Ex 13.5

	Students' solutions
	Jingeon An's solution to...
	Ex 7.2
	Ex 8.4

	Carl Johansson's solution to Ex 7.5
	Jonas Papazoglou-Hennig's solution to...
	Ex 1.4
	Ex 2.7 (b)

	Salim Benchelabi's solution to Ex 3.5

	Past Exams
	December 2020 Practice Exam with Solutions
	January 2021 Final Exam with Solutions

	Exercise Sheets
	Exercise Sheet 1
	Exercise Sheet 2
	Exercise Sheet 3
	Exercise Sheet 4
	Exercise Sheet 5
	Exercise Sheet 6
	Exercise Sheet 7
	Exercise Sheet 8
	Exercise Sheet 9
	Exercise Sheet 10
	Exercise Sheet 11
	Exercise Sheet 12
	Exercise Sheet 13

	References
	Index

